Fusing Event-based Camera and Radar for SLAM Using Spiking Neural
Networks with Continual STDP Learning
- URL: http://arxiv.org/abs/2210.04236v1
- Date: Sun, 9 Oct 2022 12:05:19 GMT
- Title: Fusing Event-based Camera and Radar for SLAM Using Spiking Neural
Networks with Continual STDP Learning
- Authors: Ali Safa, Tim Verbelen, Ilja Ocket, Andr\'e Bourdoux, Hichem Sahli,
Francky Catthoor, Georges Gielen
- Abstract summary: This work proposes a first-of-its-kind SLAM architecture fusing an event-based camera and a Frequency Modulated Continuous Wave (FMCW) radar for drone navigation.
Each sensor is processed by a bio-inspired Spiking Neural Network (SNN) with continual Spike-Timing-Dependent Plasticity (STDP) learning.
We conduct numerous experiments to benchmark our system against state-of-the-art RGB methods and we demonstrate the robustness of our DVS-Radar SLAM approach.
- Score: 7.667590910539249
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work proposes a first-of-its-kind SLAM architecture fusing an
event-based camera and a Frequency Modulated Continuous Wave (FMCW) radar for
drone navigation. Each sensor is processed by a bio-inspired Spiking Neural
Network (SNN) with continual Spike-Timing-Dependent Plasticity (STDP) learning,
as observed in the brain. In contrast to most learning-based SLAM systems%,
which a) require the acquisition of a representative dataset of the environment
in which navigation must be performed and b) require an off-line training
phase, our method does not require any offline training phase, but rather the
SNN continuously learns features from the input data on the fly via STDP. At
the same time, the SNN outputs are used as feature descriptors for loop closure
detection and map correction. We conduct numerous experiments to benchmark our
system against state-of-the-art RGB methods and we demonstrate the robustness
of our DVS-Radar SLAM approach under strong lighting variations.
Related papers
- RFI Detection with Spiking Neural Networks [25.08630315149258]
This study introduces first exploratory application of Spiking Neural Networks (SNNs) to an astronomical dataprocessing task, specifically RFI detection.
We adapt the nearest-latentneighbours algorithm and auto-encoder architecture proposed by previous authors to SNN execution by direct ANN2SNN conversion.
Our approach remains competitive with existing methods in AUROC, AUPRC and F1 scores for the HERA dataset but exhibits difficulty in the LOFAR and Tabascal datasets.
arXiv Detail & Related papers (2023-11-24T06:27:08Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
We present a brain-inspired platform for prototyping real-time event-based Spiking Neural Networks (SNNs)
The system proposed supports the direct emulation of dynamic and realistic neural processing phenomena such as short-term plasticity, NMDA gating, AMPA diffusion, homeostasis, spike frequency adaptation, conductance-based dendritic compartments and spike transmission delays.
The flexibility to emulate different biologically plausible neural networks, and the chip's ability to monitor both population and single neuron signals in real-time, allow to develop and validate complex models of neural processing for both basic research and edge-computing applications.
arXiv Detail & Related papers (2023-10-01T03:48:16Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - Classification of Intra-Pulse Modulation of Radar Signals by Feature
Fusion Based Convolutional Neural Networks [5.199765487172328]
We propose a novel deep-learning based technique that automatically recognizes intra-pulse modulation types of radar signals.
We show that the proposed FF-CNN technique outperforms the current state-of-the-art alternatives.
arXiv Detail & Related papers (2022-05-19T20:18:17Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Wireless Sensing With Deep Spectrogram Network and Primitive Based
Autoregressive Hybrid Channel Model [20.670058030653458]
Human motion recognition (HMR) based on wireless sensing is a low-cost technique for scene understanding.
Current HMR systems adopt support vector machines (SVMs) and convolutional neural networks (CNNs) to classify radar signals.
This paper proposes a deep spectrogram network (DSN) by leveraging the residual mapping technique to enhance the HMR performance.
arXiv Detail & Related papers (2021-04-21T06:33:01Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
We propose an approach to address the object recognition problem directly with raw temporal pulses utilizing the spiking neural network (SNN)
Being evaluated on various datasets, our proposed method has shown comparable performance as the state-of-the-art methods, while achieving remarkable time efficiency.
arXiv Detail & Related papers (2020-01-24T22:58:55Z) - Volterra Neural Networks (VNNs) [24.12314339259243]
We propose a Volterra filter-inspired Network architecture to reduce the complexity of Convolutional Neural Networks.
We show an efficient parallel implementation of this Volterra Neural Network (VNN) along with its remarkable performance.
The proposed approach is evaluated on UCF-101 and HMDB-51 datasets for action recognition, and is shown to outperform state of the art CNN approaches.
arXiv Detail & Related papers (2019-10-21T19:22:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.