論文の概要: Traveling Salesman Problem from a Tensor Networks Perspective
- arxiv url: http://arxiv.org/abs/2311.14344v2
- Date: Sat, 13 Jul 2024 10:20:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 02:44:20.735821
- Title: Traveling Salesman Problem from a Tensor Networks Perspective
- Title(参考訳): テンソルネットワークから見たセールスマン問題
- Authors: Alejandro Mata Ali, Iñigo Perez Delgado, Aitor Moreno Fdez. de Leceta,
- Abstract要約: 我々は、旅行セールスマン問題(TSP)を解決するための新しい量子インスピレーション付きアルゴリズムを提案する。
我々は、TSPの異なる一般化に適応し、実際の生産的産業ケースであるジョブ再割り当て問題に適用する。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel quantum-inspired algorithm for solving the Traveling Salesman Problem (TSP) and some of its variations using tensor networks. This approach consists on the simulated initialization of a quantum system with superposition of all possible combinations, an imaginary time evolution, a projection, and lastly a partial trace to search for solutions. This is a heuristically approximable algorithm to obtain approximate solutions with a more affordable computational cost. We adapt it to different generalizations of the TSP and apply it to the job reassignment problem, a real productive industrial case.
- Abstract(参考訳): 本稿では,トラベリングセールスマン問題(TSP)とその変種をテンソルネットワークを用いて解くための新しい量子インスピレーション付きアルゴリズムを提案する。
このアプローチは、あらゆる可能な組み合わせ、想像上の時間進化、射影、そして最後に解を探す部分的トレースを重ね合わせて、量子システムのシミュレートされた初期化に基づいている。
これは、より安価な計算コストで近似解を得るためのヒューリスティックに近似可能なアルゴリズムである。
我々は、TSPの異なる一般化に適応し、実際の生産的産業ケースであるジョブ再割り当て問題に適用する。
関連論文リスト
- Quantum evolutionary algorithm for TSP combinatorial optimisation problem [0.0]
本稿では、量子遺伝的アルゴリズム(QGA)を用いて、旅行セールスマン問題(TSP)と呼ばれる新しい問題を解決する方法を実装する。
我々は、この新しいアプローチがいかにうまく機能するかを、古典的遺伝的アルゴリズム(CGA)として知られる従来の手法と比較した。
論文 参考訳(メタデータ) (2024-09-20T08:27:42Z) - Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
本稿では,量子化と早期出口動的ネットワークを組み合わせたより一般的な動的ネットワークQuEEを提案する。
我々のアルゴリズムは、ソフトアーリーエグジットや入力依存圧縮の一形態と見なすことができる。
提案手法の重要な要素は、さらなる計算によって実現可能な潜在的な精度向上の正確な予測である。
論文 参考訳(メタデータ) (2024-06-20T15:25:13Z) - Tensor Completion via Integer Optimization [7.813563137863005]
テンソル完備化問題の主な課題は、計算力と情報理論サンプルの複雑さ率の基本的な緊張である。
過去のアプローチでは、情報理論の速度を達成するか、対応する解を計算するための実用的なアルゴリズムが欠如していた。
本稿では, 線形数のオラクルステップと情報理論速度で証明可能な収束(数値耐性)を両立させることにより, この緊張を解消する新しいテンソル完備化アルゴリズムを開発する。
論文 参考訳(メタデータ) (2024-02-06T21:44:07Z) - Task Scheduling Optimization from a Tensor Network Perspective [41.94295877935867]
本稿では,量子インスパイアされたテンソルネットワーク技術を用いた産業プラントにおけるタスク最適化手法を提案する。
我々は、全ての可能な組み合わせで量子システムをシミュレートし、制約を満たすために想像上の時間進化と一連の投影を実行する。
論文 参考訳(メタデータ) (2023-11-17T10:10:46Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
ポートフォリオ最適化からロジスティクスに至るまで、制約付き最適化問題は業界に多い。
これらの問題の解決における主要な障害の1つは、有効な検索空間を制限する非自明なハード制約の存在である。
本研究では、Ax=bという形の任意の整数値等式制約をU(1)対称ネットワーク(TN)に直接エンコードし、それらの適用性を量子に着想を得た生成モデルとして活用する。
論文 参考訳(メタデータ) (2022-11-16T18:59:54Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
波長割当問題を解くための量子インスピレーションアルゴリズムを提案し,開発する。
本研究は,電気通信における現実的な問題に対する量子インスパイアされたアルゴリズムの活用の道筋をたどるものである。
論文 参考訳(メタデータ) (2022-11-01T07:52:47Z) - Optimization of Robot Trajectory Planning with Nature-Inspired and
Hybrid Quantum Algorithms [0.0]
産業規模でロボット軌道計画問題を解く。
我々のエンドツーエンドソリューションは、高度に多目的なランダムキーアルゴリズムとモデル積み重ねとアンサンブル技術を統合している。
我々は、後者が我々のより大きなパイプラインにどのように統合され、問題に対する量子対応ハイブリッドソリューションを提供するかを示す。
論文 参考訳(メタデータ) (2022-06-08T02:38:32Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
本稿では,一般に局所的に制約された最適化問題に対する量子インスパイアされたテンソルネットワークに基づくアルゴリズムを提案する。
我々のアルゴリズムは、興味のある問題に対してハミルトニアンを構築し、量子問題に効果的にマッピングする。
本研究は,本手法の有効性と応用の可能性を示すものである。
論文 参考訳(メタデータ) (2022-03-29T05:44:07Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
本稿では,ディープニューラルネットワークのトレーニング問題について検討し,最適化環境に隠された凸性を明らかにするための解析的アプローチを提案する。
我々は、標準のディープ・ネットワークとResNetを特別なケースとして含む、ディープ・パラレルなReLUネットワークアーキテクチャについて検討する。
論文 参考訳(メタデータ) (2021-10-18T18:00:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。