Introducing 3DCNN ResNets for ASD full-body kinematic assessment: a comparison with hand-crafted features
- URL: http://arxiv.org/abs/2311.14533v3
- Date: Wed, 26 Jun 2024 13:29:12 GMT
- Title: Introducing 3DCNN ResNets for ASD full-body kinematic assessment: a comparison with hand-crafted features
- Authors: Alberto Altozano, Maria Eleonora Minissi, Mariano Alcañiz, Javier Marín-Morales,
- Abstract summary: We propose a newly adapted 3DCNN ResNet from and compare it to widely used hand-crafted features for motor ASD assessment.
Specifically, we developed a virtual reality environment with multiple motor tasks and trained models using both approaches.
Results show the proposed model achieves a maximum accuracy of 85$pm$3%, outperforming state-of-the-art end-to-end models with short 1-to-3 minute samples.
- Score: 1.3499500088995464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autism Spectrum Disorder (ASD) is characterized by challenges in social communication and restricted patterns, with motor abnormalities gaining traction for early detection. However, kinematic analysis in ASD is limited, often lacking robust validation and relying on hand-crafted features for single tasks, leading to inconsistencies across studies. End-to-end models have emerged as promising methods to overcome the need for feature engineering. Our aim is to propose a newly adapted 3DCNN ResNet from and compare it to widely used hand-crafted features for motor ASD assessment. Specifically, we developed a virtual reality environment with multiple motor tasks and trained models using both approaches. We prioritized a reliable validation framework with repeated cross-validation. Results show the proposed model achieves a maximum accuracy of 85$\pm$3%, outperforming state-of-the-art end-to-end models with short 1-to-3 minute samples. Our comparative analysis with hand-crafted features shows feature-engineered models outperformed our end-to-end model in certain tasks. However, our end-to-end model achieved a higher mean AUC of 0.80$\pm$0.03. Additionally, statistical differences were found in model variance, with our end-to-end model providing more consistent results with less variability across all VR tasks, demonstrating domain generalization and reliability. These findings show that end-to-end models enable less variable and context-independent ASD classification without requiring domain knowledge or task specificity. However, they also recognize the effectiveness of hand-crafted features in specific task scenarios.
Related papers
- Decoupled and Interactive Regression Modeling for High-performance One-stage 3D Object Detection [8.531052087985097]
Inadequate bounding box modeling in regression tasks constrains the performance of one-stage 3D object detection.
We propose Decoupled and Interactive Regression Modeling (DIRM) for one-stage detection.
arXiv Detail & Related papers (2024-09-01T10:47:22Z) - REFRESH: Responsible and Efficient Feature Reselection Guided by SHAP Values [17.489279048199304]
REFRESH is a method to reselect features so that additional constraints that are desirable towards model performance can be achieved without having to train several new models.
REFRESH's underlying algorithm is a novel technique using SHAP values and correlation analysis that can approximate for the predictions of a model without having to train these models.
arXiv Detail & Related papers (2024-03-13T18:06:43Z) - Three-Stage Adjusted Regression Forecasting (TSARF) for Software Defect
Prediction [5.826476252191368]
Nonhomogeneous Poisson process (NHPP) SRGM are the most commonly employed models.
Increased model complexity presents a challenge in identifying robust and computationally efficient algorithms.
arXiv Detail & Related papers (2024-01-31T02:19:35Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Towards Calibrated Robust Fine-Tuning of Vision-Language Models [97.19901765814431]
This work proposes a robust fine-tuning method that improves both OOD accuracy and confidence calibration simultaneously in vision language models.
We show that both OOD classification and OOD calibration errors have a shared upper bound consisting of two terms of ID data.
Based on this insight, we design a novel framework that conducts fine-tuning with a constrained multimodal contrastive loss enforcing a larger smallest singular value.
arXiv Detail & Related papers (2023-11-03T05:41:25Z) - Are Sample-Efficient NLP Models More Robust? [90.54786862811183]
We investigate the relationship between sample efficiency (amount of data needed to reach a given ID accuracy) and robustness (how models fare on OOD evaluation)
We find that higher sample efficiency is only correlated with better average OOD robustness on some modeling interventions and tasks, but not others.
These results suggest that general-purpose methods for improving sample efficiency are unlikely to yield universal OOD robustness improvements, since such improvements are highly dataset- and task-dependent.
arXiv Detail & Related papers (2022-10-12T17:54:59Z) - Distribution-Aware Single-Stage Models for Multi-Person 3D Pose
Estimation [29.430404703883084]
We present a novel Distribution-Aware Single-stage (DAS) model for tackling the challenging multi-person 3D pose estimation problem.
The proposed DAS model simultaneously localizes person positions and their corresponding body joints in the 3D camera space in a one-pass manner.
Comprehensive experiments on benchmarks CMU Panoptic and MuPoTS-3D demonstrate the superior efficiency of the proposed DAS model.
arXiv Detail & Related papers (2022-03-15T07:30:27Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z) - When Liebig's Barrel Meets Facial Landmark Detection: A Practical Model [87.25037167380522]
We propose a model that is accurate, robust, efficient, generalizable, and end-to-end trainable.
In order to achieve a better accuracy, we propose two lightweight modules.
DQInit dynamically initializes the queries of decoder from the inputs, enabling the model to achieve as good accuracy as the ones with multiple decoder layers.
QAMem is designed to enhance the discriminative ability of queries on low-resolution feature maps by assigning separate memory values to each query rather than a shared one.
arXiv Detail & Related papers (2021-05-27T13:51:42Z) - Balancing Accuracy and Latency in Multipath Neural Networks [0.09668407688201358]
We use a one-shot neural architecture search model to implicitly evaluate the performance of an intractable number of neural networks.
We show that our method can accurately model the relative performance between models with different latencies and predict the performance of unseen models with good precision across different datasets.
arXiv Detail & Related papers (2021-04-25T00:05:48Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.