A Reliable Framework for Human-in-the-Loop Anomaly Detection in Time Series
- URL: http://arxiv.org/abs/2405.03234v4
- Date: Mon, 23 Jun 2025 17:41:29 GMT
- Title: A Reliable Framework for Human-in-the-Loop Anomaly Detection in Time Series
- Authors: Ziquan Deng, Xiwei Xuan, Kwan-Liu Ma, Zhaodan Kong,
- Abstract summary: We introduce HILAD, a novel framework designed to foster a dynamic and bidirectional collaboration between humans and AI.<n>Through our visual interface, HILAD empowers domain experts to detect, interpret, and correct unexpected model behaviors at scale.
- Score: 17.08674819906415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series anomaly detection is a critical machine learning task for numerous applications, such as finance, healthcare, and industrial systems. However, even high-performing models may exhibit potential issues such as biases, leading to unreliable outcomes and misplaced confidence. While model explanation techniques, particularly visual explanations, offer valuable insights by elucidating model attributions of their decision, many limitations still exist -- They are primarily instance-based and not scalable across the dataset, and they provide one-directional information from the model to the human side, lacking a mechanism for users to address detected issues. To fulfill these gaps, we introduce HILAD, a novel framework designed to foster a dynamic and bidirectional collaboration between humans and AI for enhancing anomaly detection models in time series. Through our visual interface, HILAD empowers domain experts to detect, interpret, and correct unexpected model behaviors at scale. Our evaluation through user studies with two models and three time series datasets demonstrates the effectiveness of HILAD, which fosters a deeper model understanding, immediate corrective actions, and model reliability enhancement.
Related papers
- Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - Preference Learning for AI Alignment: a Causal Perspective [55.2480439325792]
We frame this problem in a causal paradigm, providing the rich toolbox of causality to identify persistent challenges.<n>Inheriting from the literature of causal inference, we identify key assumptions necessary for reliable generalisation.<n>We illustrate failure modes of naive reward models and demonstrate how causally-inspired approaches can improve model robustness.
arXiv Detail & Related papers (2025-06-06T10:45:42Z) - Interactive Visual Assessment for Text-to-Image Generation Models [28.526897072724662]
We propose DyEval, a dynamic interactive visual assessment framework for generative models.
DyEval features an intuitive visual interface that enables users to interactively explore and analyze model behaviors.
Our framework provides valuable insights for improving generative models and has broad implications for advancing the reliability and capabilities of visual generation systems.
arXiv Detail & Related papers (2024-11-23T10:06:18Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Uncertainty-aware Human Mobility Modeling and Anomaly Detection [28.311683535974634]
We study how to model human agents' mobility behavior toward effective anomaly detection.
We use GPS data as a sequence stay-point events, each with a set of characterizingtemporal features.
Experiments on large expert-simulated datasets with tens of thousands of agents demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2024-10-02T06:57:08Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Real-Time Anomaly Detection and Reactive Planning with Large Language Models [18.57162998677491]
Foundation models, e.g., large language models (LLMs), trained on internet-scale data possess zero-shot capabilities.
We present a two-stage reasoning framework that incorporates the judgement regarding potential anomalies into a safe control framework.
This enables our monitor to improve the trustworthiness of dynamic robotic systems, such as quadrotors or autonomous vehicles.
arXiv Detail & Related papers (2024-07-11T17:59:22Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
We review the use of diffusion models in time series and S-temporal data, categorizing them by model, task type, data modality, and practical application domain.
We categorize diffusion models into unconditioned and conditioned types discuss time series and S-temporal data separately.
Our survey covers their application extensively in various fields including healthcare, recommendation, climate, energy, audio, and transportation.
arXiv Detail & Related papers (2024-04-29T17:19:40Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Enhanced multi-fidelity modelling for digital twin and uncertainty
quantification [0.0]
Data-driven models play a crucial role in digital twins, enabling real-time updates and predictions.
The fidelity of available data and the scarcity of accurate sensor data often hinder the efficient learning of surrogate models.
We propose a novel framework that begins by developing a robust multi-fidelity surrogate model.
arXiv Detail & Related papers (2023-06-26T05:58:17Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - CausalAgents: A Robustness Benchmark for Motion Forecasting using Causal
Relationships [8.679073301435265]
We construct a new benchmark for evaluating and improving model robustness by applying perturbations to existing data.
We use these labels to perturb the data by deleting non-causal agents from the scene.
Under non-causal perturbations, we observe a $25$-$38%$ relative change in minADE as compared to the original.
arXiv Detail & Related papers (2022-07-07T21:28:23Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Building an Automated and Self-Aware Anomaly Detection System [0.0]
It can be challenging to proactively monitor a large number of diverse and constantly changing time series for anomalies.
Traditionally, variations in the data generation processes and patterns have required strong modeling expertise to create models that accurately flag anomalies.
In this paper, we describe an anomaly detection system that overcomes this common challenge by keeping track of its own performance and making changes as necessary to each model without requiring manual intervention.
arXiv Detail & Related papers (2020-11-10T11:19:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.