論文の概要: Neuromorphic Intermediate Representation: A Unified Instruction Set for Interoperable Brain-Inspired Computing
- arxiv url: http://arxiv.org/abs/2311.14641v2
- Date: Mon, 30 Sep 2024 09:40:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:01:07.806455
- Title: Neuromorphic Intermediate Representation: A Unified Instruction Set for Interoperable Brain-Inspired Computing
- Title(参考訳): ニューロモルフィック中間表現 : 相互運用型脳誘発コンピューティングのための統一命令セット
- Authors: Jens E. Pedersen, Steven Abreu, Matthias Jobst, Gregor Lenz, Vittorio Fra, Felix C. Bauer, Dylan R. Muir, Peng Zhou, Bernhard Vogginger, Kade Heckel, Gianvito Urgese, Sadasivan Shankar, Terrence C. Stewart, Sadique Sheik, Jason K. Eshraghian,
- Abstract要約: 神経力学をシミュレートするニューラルネットワークとニューロモルフィックハードウェアプラットフォームが注目されている。
本稿では,デジタルニューロモルフィックシステムにおける計算の共通参照フレームを確立する。
7つのニューロモルフィックシミュレータと4つのデジタルハードウェアプラットフォームにまたがる複雑さの異なる3つのスパイクニューラルネットワークモデルを再現して実演する。
- 参考スコア(独自算出の注目度): 4.066607775161713
- License:
- Abstract: Spiking neural networks and neuromorphic hardware platforms that simulate neuronal dynamics are getting wide attention and are being applied to many relevant problems using Machine Learning. Despite a well-established mathematical foundation for neural dynamics, there exists numerous software and hardware solutions and stacks whose variability makes it difficult to reproduce findings. Here, we establish a common reference frame for computations in digital neuromorphic systems, titled Neuromorphic Intermediate Representation (NIR). NIR defines a set of computational and composable model primitives as hybrid systems combining continuous-time dynamics and discrete events. By abstracting away assumptions around discretization and hardware constraints, NIR faithfully captures the computational model, while bridging differences between the evaluated implementation and the underlying mathematical formalism. NIR supports an unprecedented number of neuromorphic systems, which we demonstrate by reproducing three spiking neural network models of different complexity across 7 neuromorphic simulators and 4 digital hardware platforms. NIR decouples the development of neuromorphic hardware and software, enabling interoperability between platforms and improving accessibility to multiple neuromorphic technologies. We believe that NIR is a key next step in brain-inspired hardware-software co-evolution, enabling research towards the implementation of energy efficient computational principles of nervous systems. NIR is available at neuroir.org
- Abstract(参考訳): 神経力学をシミュレートするニューラルネットワークとニューロモルフィックハードウェアプラットフォームが注目され、機械学習を用いた多くの関連する問題に適用されている。
神経力学の数学的基盤が確立されているにもかかわらず、多くのソフトウェアやハードウェアソリューションやスタックが存在しており、その可変性は発見の再現を困難にしている。
そこで我々は,ニューロモルフィック中間表現 (Neuromorphic Intermediate Representation, NIR) と題する,デジタルニューロモルフィックシステムにおける計算の共通参照フレームを確立する。
NIRは、連続時間力学と離散イベントを組み合わせたハイブリッドシステムとして、計算と構成可能なモデルプリミティブのセットを定義している。
離散化とハードウェア制約に関する仮定を抽象化することにより、NIRは、評価された実装と基礎となる数学的形式との違いをブリッジしながら、忠実に計算モデルをキャプチャする。
NIRはこれまでにない数のニューロモルフィックシステムをサポートしており、我々は7つのニューロモルフィックシミュレーターと4つのデジタルハードウェアプラットフォームで異なる複雑さの3つのスパイキングニューラルネットワークモデルを再現している。
NIRは、ニューロモルフィックハードウェアとソフトウェアの開発を分離し、プラットフォーム間の相互運用性を可能にし、複数のニューロモルフィック技術へのアクセシビリティを向上させる。
我々は、NIRが脳にインスパイアされたハードウェア-ソフトウェア共進化の鍵となるステップであり、神経系のエネルギー効率の良い計算原理の実現に向けた研究を可能にすると信じている。
NIRはNeuroir.orgで利用可能である
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
教師なし表現学習が可能な脳様ニューラルネットワークモデルを導入,評価する。
このモデルは、一般的な機械学習ベンチマークのさまざまなセットでテストされた。
論文 参考訳(メタデータ) (2024-06-07T08:32:30Z) - An Integrated Toolbox for Creating Neuromorphic Edge Applications [3.671692919685993]
スパイキングニューラルネットワーク(SNN)とニューロモルフィックモデルはより効率的で、より生物学的リアリズムを持つ。
CARLsim++は、ニューロモルフィックアプリケーションの高速かつ簡易な作成を可能にする統合ツールボックスである。
論文 参考訳(メタデータ) (2024-04-12T16:34:55Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Toward stochastic neural computing [11.955322183964201]
本稿では,ノイズ入力のストリームをスパイキングニューロンの集団によって変換し,処理するニューラルコンピューティングの理論を提案する。
本手法をIntelのLoihiニューロモルフィックハードウェアに適用する。
論文 参考訳(メタデータ) (2023-05-23T12:05:35Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
フォン・ノイマンアーキテクチャと古典的ニューラルネットワークに基づく現代のAIシステムは、脳と比較して多くの基本的な制限がある。
この記事では、そのような制限と、それらが緩和される方法について論じる。
これは、これらの制限が克服されている現在利用可能なニューロモーフィックAIプロジェクトの概要を示す。
論文 参考訳(メタデータ) (2022-05-25T20:16:05Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - The Backpropagation Algorithm Implemented on Spiking Neuromorphic
Hardware [4.3310896118860445]
本稿ではパルスゲートの動的情報調整と処理に基づくニューロモルフィック・スパイクバックプロパゲーションアルゴリズムを提案する。
MNISTデータセットから桁の分類を学習する3層回路の実証を実証する。
論文 参考訳(メタデータ) (2021-06-13T15:56:40Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。