論文の概要: Toward stochastic neural computing
- arxiv url: http://arxiv.org/abs/2305.13982v2
- Date: Sun, 21 Apr 2024 05:35:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 01:22:08.957544
- Title: Toward stochastic neural computing
- Title(参考訳): 確率的ニューラルコンピューティングを目指して
- Authors: Yang Qi, Zhichao Zhu, Yiming Wei, Lu Cao, Zhigang Wang, Jie Zhang, Wenlian Lu, Jianfeng Feng,
- Abstract要約: 本稿では,ノイズ入力のストリームをスパイキングニューロンの集団によって変換し,処理するニューラルコンピューティングの理論を提案する。
本手法をIntelのLoihiニューロモルフィックハードウェアに適用する。
- 参考スコア(独自算出の注目度): 11.955322183964201
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The highly irregular spiking activity of cortical neurons and behavioral variability suggest that the brain could operate in a fundamentally probabilistic way. Mimicking how the brain implements and learns probabilistic computation could be a key to developing machine intelligence that can think more like humans. In this work, we propose a theory of stochastic neural computing (SNC) in which streams of noisy inputs are transformed and processed through populations of nonlinearly coupled spiking neurons. To account for the propagation of correlated neural variability, we derive from first principles a moment embedding for spiking neural network (SNN). This leads to a new class of deep learning model called the moment neural network (MNN) which naturally generalizes rate-based neural networks to second order. As the MNN faithfully captures the stationary statistics of spiking neural activity, it can serve as a powerful proxy for training SNN with zero free parameters. Through joint manipulation of mean firing rate and noise correlations in a task-driven way, the model is able to learn inference tasks while simultaneously minimizing prediction uncertainty, resulting in enhanced inference speed. We further demonstrate the application of our method to Intel's Loihi neuromorphic hardware. The proposed theory of SNC may open up new opportunities for developing machine intelligence capable of computing uncertainty and for designing unconventional computing architectures.
- Abstract(参考訳): 皮質ニューロンの非常に不規則なスパイク活動と行動の変動は、脳が基本的に確率論的に動作できることを示唆している。
脳がどのように実装し、確率計算を学習するかを模倣することは、人間のように考えることができるマシンインテリジェンスを開発するための鍵となるかもしれない。
本研究では、非線形結合スパイキングニューロンの集団を通してノイズ入力のストリームを変換し、処理する確率的ニューラルコンピューティング(SNC)の理論を提案する。
相関型ニューラル・バリアビリティの伝播を考慮し,スパイキング・ニューラル・ネットワーク(SNN)に埋め込まれたモーメントの第一原理から導いた。
これにより、レートベースのニューラルネットワークを2階に自然に一般化する、モーメントニューラルネットワーク(MNN)と呼ばれる新しいタイプのディープラーニングモデルが生まれる。
MNNは神経活動の定常統計を忠実に捉えているので、自由パラメータゼロでSNNを訓練するための強力なプロキシとして機能する。
タスク駆動方式で平均発火率とノイズ相関を共同操作することにより,予測の不確実性を最小化しながら推論タスクを学習し,推論速度を向上する。
さらに,本手法をIntelのLoihiニューロモルフィックハードウェアに適用した。
提案されたSNC理論は、不確実性を計算できるマシンインテリジェンスを開発するための新たな機会を開拓し、非伝統的なコンピューティングアーキテクチャを設計する可能性がある。
関連論文リスト
- Expressivity of Neural Networks with Random Weights and Learned Biases [44.02417750529102]
最近の研究は、任意の関数がパラメータの小さな部分集合をチューニングすることによって同様に学習できることを示し、普遍近似の境界を推し進めている。
ランダムな重みを固定したフィードフォワードニューラルネットワークが、バイアスのみを学習することによって複数のタスクを実行することができることを示す理論的および数値的なエビデンスを提供する。
我々の結果は神経科学に関係しており、シナプスの重みを変えることなく動的に行動に関連のある変化が起こる可能性を実証している。
論文 参考訳(メタデータ) (2024-07-01T04:25:49Z) - Stochastic Spiking Neural Networks with First-to-Spike Coding [7.955633422160267]
スパイキングニューラルネットワーク (SNN) は、その生物の楽観性とエネルギー効率で知られている。
本研究では,SNNアーキテクチャにおける新しい計算手法と情報符号化方式の融合について検討する。
提案手法のトレードオフを,精度,推論遅延,スパイク空間性,エネルギー消費,データセットの観点から検討する。
論文 参考訳(メタデータ) (2024-04-26T22:52:23Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Exploiting Noise as a Resource for Computation and Learning in Spiking
Neural Networks [32.0086664373154]
本研究では,雑音型スパイクニューラルネットワーク(NSNN)とノイズ駆動学習規則(NDL)を紹介する。
NSNNは、スケーラブルでフレキシブルで信頼性の高い計算をもたらす理論的なフレームワークを提供する。
論文 参考訳(メタデータ) (2023-05-25T13:21:26Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
ほとんどの人工ニューラルネットワーク(ANN)では、神経計算は通常すべてのニューロン間で共有される活性化関数に抽象化される。
本稿では,複雑な計算を行うことができる多様なニューロンの集合を実現するために,神経中心パラメータの最適化を提案する。
論文 参考訳(メタデータ) (2023-05-25T11:33:04Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Neuroevolution of a Recurrent Neural Network for Spatial and Working
Memory in a Simulated Robotic Environment [57.91534223695695]
我々は,ラットで観察される行動と神経活動を再現する進化的アルゴリズムを用いて,生物学的に有意なリカレントニューラルネットワーク(RNN)でウェイトを進化させた。
提案手法は, 進化したRNNの動的活動が, 興味深く複雑な認知行動をどのように捉えているかを示す。
論文 参考訳(メタデータ) (2021-02-25T02:13:52Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。