Zero-Shot Question Answering over Financial Documents using Large
Language Models
- URL: http://arxiv.org/abs/2311.14722v1
- Date: Sun, 19 Nov 2023 16:23:34 GMT
- Title: Zero-Shot Question Answering over Financial Documents using Large
Language Models
- Authors: Karmvir Singh Phogat, Chetan Harsha, Sridhar Dasaratha, Shashishekar
Ramakrishna, Sai Akhil Puranam
- Abstract summary: We introduce a large language model (LLM) based approach to answer complex questions requiring multi-hop numerical reasoning over financial reports.
We use novel zero-shot prompts that guide the LLM to encode the required reasoning into a Python program or a domain specific language.
- Score: 0.18749305679160366
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce a large language model (LLM) based approach to answer complex
questions requiring multi-hop numerical reasoning over financial reports. While
LLMs have exhibited remarkable performance on various natural language and
reasoning tasks, complex reasoning problems often rely on few-shot prompts that
require carefully crafted examples. In contrast, our approach uses novel
zero-shot prompts that guide the LLM to encode the required reasoning into a
Python program or a domain specific language. The generated program is then
executed by a program interpreter, thus mitigating the limitations of LLM in
performing accurate arithmetic calculations.
We evaluate the proposed approach on three financial datasets using some of
the recently developed generative pretrained transformer (GPT) models and
perform comparisons with various zero-shot baselines. The experimental results
demonstrate that our approach significantly improves the accuracy for all the
LLMs over their respective baselines. We provide a detailed analysis of the
results, generating insights to support our findings. The success of our
approach demonstrates the enormous potential to extract complex domain specific
numerical reasoning by designing zero-shot prompts to effectively exploit the
knowledge embedded in LLMs.
Related papers
- What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
Large language models (LLMs) can achieve results comparable to fine-tuned multilingual pre-trained language models.
This paper explores what translation information, such as the source, reference, translation errors and annotation guidelines, is needed for LLMs to evaluate machine translation quality.
arXiv Detail & Related papers (2024-10-04T09:50:45Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - Automated Assessment of Students' Code Comprehension using LLMs [0.3293989832773954]
Large Language Models (LLMs) and encoder-based Semantic Textual Similarity (STS) models are assessed.
Our findings indicate that LLMs, when prompted in few-shot and chain-of-thought setting, perform comparable to fine-tuned encoder-based models in evaluating students' short answers in programming domain.
arXiv Detail & Related papers (2023-12-19T20:39:12Z) - Exploring the Potential of Large Language Models in Computational Argumentation [54.85665903448207]
Large language models (LLMs) have demonstrated impressive capabilities in understanding context and generating natural language.
This work aims to embark on an assessment of LLMs, such as ChatGPT, Flan models, and LLaMA2 models, in both zero-shot and few-shot settings.
arXiv Detail & Related papers (2023-11-15T15:12:15Z) - Leveraging Large Language Models to Generate Answer Set Programs [5.532477732693001]
Large language models (LLMs) have demonstrated exceptional performance in various natural language processing tasks.
This paper proposes a neuro-symbolic method that combines the strengths of large language models and answer set programming.
arXiv Detail & Related papers (2023-07-15T03:40:55Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z) - Rethinking with Retrieval: Faithful Large Language Model Inference [91.66406351103484]
We propose a novel post-processing approach, rethinking with retrieval (RR)
RR retrieves relevant external knowledge based on the reasoning steps obtained from the chain-of-thought prompting.
We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks.
arXiv Detail & Related papers (2022-12-31T22:35:34Z) - PAL: Program-aided Language Models [112.94785609781503]
We present Program-Aided Language models (PaL) to understand natural language problems.
PaL offloads the solution step to a programmatic runtime such as a Python interpreter.
We set new state-of-the-art results in all 12 benchmarks.
arXiv Detail & Related papers (2022-11-18T18:56:13Z) - Large Language Models are Zero-Shot Reasoners [28.6899375595088]
Chain of thought (CoT) prompting is a technique for eliciting complex multi-step reasoning through step-by-step answer examples.
We show that LLMs are decent zero-shot reasoners by simply adding Let's think step by step'' before each answer.
Experimental results demonstrate that our Zero-shot-CoT, using the same single prompt template, significantly outperforms zero-shot LLM performances.
arXiv Detail & Related papers (2022-05-24T09:22:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.