Understanding the Role of Textual Prompts in LLM for Time Series Forecasting: an Adapter View
- URL: http://arxiv.org/abs/2311.14782v2
- Date: Mon, 18 Nov 2024 05:27:38 GMT
- Title: Understanding the Role of Textual Prompts in LLM for Time Series Forecasting: an Adapter View
- Authors: Peisong Niu, Tian Zhou, Xue Wang, Liang Sun, Rong Jin,
- Abstract summary: In the burgeoning domain of Large Language Models (LLMs), there is a growing interest in applying LLM to time series forecasting.
This study aims to understand how and why the integration of textual prompts into LLM can effectively improve the prediction accuracy of time series.
- Score: 21.710722062737577
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the burgeoning domain of Large Language Models (LLMs), there is a growing interest in applying LLM to time series forecasting, with multiple studies focused on leveraging textual prompts to further enhance the predictive prowess. This study aims to understand how and why the integration of textual prompts into LLM can effectively improve the prediction accuracy of time series, which is not obvious at the glance, given the significant domain gap between texts and time series. Our extensive examination leads us to believe that (a) adding text prompts is roughly equivalent to introducing additional adapters, and (b) It is the introduction of learnable parameters rather than textual information that aligns the LLM with the time series forecasting task, ultimately enhancing prediction accuracy. Inspired by this discovery, we developed four adapters that explicitly address the gap between LLM and time series, and further improve the prediction accuracy. Overall,our work highlights how textual prompts enhance LLM accuracy in time series forecasting and suggests new avenues for continually improving LLM-based time series analysis.
Related papers
- Exploring the Effectiveness and Interpretability of Texts in LLM-based Time Series Models [5.2980803808373516]
Large Language Models (LLMs) have been applied to time series forecasting tasks, leveraging pre-trained language models as the backbone.
This study seeks to investigate the actual efficacy and interpretability of such textual incorporations.
arXiv Detail & Related papers (2025-04-09T02:48:35Z) - LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring.
Existing Large Language Models (LLMs) usually perform suboptimally because they neglect the inherent characteristics of time series data.
We propose LLM-PS to empower the LLM for TSF by learning the fundamental textitPatterns and meaningful textitSemantics from time series data.
arXiv Detail & Related papers (2025-03-12T11:45:11Z) - Explainable Multi-modal Time Series Prediction with LLM-in-the-Loop [63.34626300024294]
TimeXL is a multi-modal prediction framework that integrates a prototype-based time series encoder.
It produces more accurate predictions and interpretable explanations.
Empirical evaluations on four real-world datasets demonstrate that TimeXL achieves up to 8.9% improvement in AUC.
arXiv Detail & Related papers (2025-03-02T20:40:53Z) - Context information can be more important than reasoning for time series forecasting with a large language model [0.0]
We explore the characteristics of large language models (LLMs) for time series forecasting.
Findings indicate that no single prompting method is universally applicable.
LLMs often fail to follow the procedures described by the prompt.
arXiv Detail & Related papers (2025-02-08T21:39:07Z) - Position: Empowering Time Series Reasoning with Multimodal LLMs [49.73647759532127]
We argue that multimodal language models (MLLMs) can enable more powerful and flexible reasoning for time series analysis.
We call on researchers and practitioners to leverage this potential by developing strategies that prioritize trust, interpretability, and robust reasoning in MLLMs.
arXiv Detail & Related papers (2025-02-03T16:10:48Z) - Rethinking Time Series Forecasting with LLMs via Nearest Neighbor Contrastive Learning [1.7892194562398749]
We propose NNCL-TLLM: Nearest Neighbor Contrastive Learning for Time series forecasting via Large Language Models.
First, we generate time series compatible text prototypes such that each text prototype represents both word token embeddings in its neighborhood and time series characteristics.
We then fine-tune the layer normalization and positional embeddings of the LLM, keeping the other layers intact, reducing the trainable parameters and decreasing the computational cost.
arXiv Detail & Related papers (2024-12-06T06:32:47Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - From News to Forecast: Integrating Event Analysis in LLM-Based Time Series Forecasting with Reflection [16.47323362700347]
We introduce a novel approach to enhance time series forecasting by reasoning across both text and time series data.
With language as a medium, our method adaptively integrates social events into forecasting models, aligning news content with time series fluctuations to provide richer insights.
Specifically, we utilize LLM-based agents to iteratively filter out irrelevant news and employ human-like reasoning to evaluate predictions.
arXiv Detail & Related papers (2024-09-26T03:50:22Z) - Is Your LLM Outdated? Evaluating LLMs at Temporal Generalization [37.58752947129519]
The rapid advancement of Large Language Models (LLMs) highlights the urgent need for evolving evaluation methodologies.
Traditional benchmarks, which are often static, fail to capture the continually changing information landscape.
Our study examines temporal generalization, which includes the ability to understand, predict, and generate text relevant to past, present, and future contexts.
arXiv Detail & Related papers (2024-05-14T09:31:31Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities [46.02234423159257]
Large language models (LLMs) have been applied in many fields and have developed rapidly in recent years.
Recent works treat large language models as emphzero-shot time series reasoners without further fine-tuning.
Our study shows that LLMs perform well in predicting time series with clear patterns and trends, but face challenges with datasets lacking periodicity.
arXiv Detail & Related papers (2024-02-16T17:15:28Z) - Multi-Patch Prediction: Adapting LLMs for Time Series Representation
Learning [22.28251586213348]
aLLM4TS is an innovative framework that adapts Large Language Models (LLMs) for time-series representation learning.
A distinctive element of our framework is the patch-wise decoding layer, which departs from previous methods reliant on sequence-level decoding.
arXiv Detail & Related papers (2024-02-07T13:51:26Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimes projects time series into the embedding space of language tokens and autoregressively generates future predictions with arbitrary lengths.
We formulate time series as prompts, extending the context for prediction beyond the lookback window.
AutoTimes achieves state-of-the-art with 0.1% trainable parameters and over $5times$ training/inference speedup.
arXiv Detail & Related papers (2024-02-04T06:59:21Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
We study the use of generative large language models (LLM) generated context information.
We propose an approach to distill the generated information during fine-tuning of self-supervised speech models.
We evaluate the proposed approach using the SLUE and Libri-light benchmarks for several downstream tasks: automatic speech recognition, named entity recognition, and sentiment analysis.
arXiv Detail & Related papers (2023-12-15T15:46:02Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.