Scaling Political Texts with Large Language Models: Asking a Chatbot Might Be All You Need
- URL: http://arxiv.org/abs/2311.16639v2
- Date: Mon, 13 May 2024 14:16:05 GMT
- Title: Scaling Political Texts with Large Language Models: Asking a Chatbot Might Be All You Need
- Authors: Gaƫl Le Mens, Aina Gallego,
- Abstract summary: We use instruction-tuned Large Language Models (LLMs) to position political texts within policy and ideological spaces.
We illustrate and validate the approach by scaling British party manifestos on the economic, social, and immigration policy dimensions.
The correlation between the position estimates obtained with the best LLMs and benchmarks based on coding by experts, crowdworkers or roll call votes exceeds.90.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We use instruction-tuned Large Language Models (LLMs) such as GPT-4, MiXtral, and Llama 3 to position political texts within policy and ideological spaces. We directly ask the LLMs where a text document or its author stand on the focal policy dimension. We illustrate and validate the approach by scaling British party manifestos on the economic, social, and immigration policy dimensions; speeches from a European Parliament debate in 10 languages on the anti- to pro-subsidy dimension; Senators of the 117th US Congress based on their tweets on the left-right ideological spectrum; and tweets published by US Representatives and Senators after the training cutoff date of GPT-4. The correlation between the position estimates obtained with the best LLMs and benchmarks based on coding by experts, crowdworkers or roll call votes exceeds .90. This training-free approach also outperforms supervised classifiers trained on large amounts of data. Using instruction-tuned LLMs to scale texts in policy and ideological spaces is fast, cost-efficient, reliable, and reproducible (in the case of open LLMs) even if the texts are short and written in different languages. We conclude with cautionary notes about the need for empirical validation.
Related papers
- Multilingual Political Views of Large Language Models: Identification and Steering [9.340686908318776]
Large language models (LLMs) are increasingly used in everyday tools and applications, raising concerns about their potential influence on political views.<n>We evaluate seven models across 14 languages using the Political Compass Test with 11 semantically equivalent paraphrases per statement to ensure robust measurement.<n>Our results reveal that larger models consistently shift toward libertarian-left positions, with significant variations across languages and model families.
arXiv Detail & Related papers (2025-07-30T12:42:35Z) - Beyond the Link: Assessing LLMs' ability to Classify Political Content across Global Media [41.94295877935867]
Using large language models (LLMs) is becoming common in the context of political science.<n>We evaluate whether LLMs can accurately identify political content (PC) from both the article text and the URLs from five countries.<n>Our findings suggest the capacity of URLs to embed most of the news content, providing a vital perspective on accuracy-cost balancing.
arXiv Detail & Related papers (2025-06-20T18:57:43Z) - Democratic or Authoritarian? Probing a New Dimension of Political Biases in Large Language Models [72.89977583150748]
We propose a novel methodology to assess how Large Language Models align with broader geopolitical value systems.<n>We find that LLMs generally favor democratic values and leaders, but exhibit increases favorability toward authoritarian figures when prompted in Mandarin.
arXiv Detail & Related papers (2025-06-15T07:52:07Z) - Large Language Models Reflect the Ideology of their Creators [73.25935570218375]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.
We uncover notable diversity in the ideological stance exhibited across different LLMs and languages.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Large Language Models' Detection of Political Orientation in Newspapers [0.0]
Various methods have been developed to better understand newspapers' positioning.
The advent of Large Language Models (LLM) hold disruptive potential to assist researchers and citizens alike.
We compare how four widely employed LLMs rate the positioning of newspapers, and compare if their answers align with one another.
Over a woldwide dataset, articles in newspapers are positioned strikingly differently by single LLMs, hinting to inconsistent training or excessive randomness in the algorithms.
arXiv Detail & Related papers (2024-05-23T06:18:03Z) - Assessing Political Bias in Large Language Models [0.624709220163167]
We evaluate the political bias of open-source Large Language Models (LLMs) concerning political issues within the European Union (EU) from a German voter's perspective.
We show that larger models, such as Llama3-70B, tend to align more closely with left-leaning political parties, while smaller models often remain neutral.
arXiv Detail & Related papers (2024-05-17T15:30:18Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
We investigate the political orientation of Large Language Models (LLMs) across a spectrum of eight polarizing topics.
Our investigation delves into the political alignment of LLMs across a spectrum of eight polarizing topics, spanning from abortion to LGBTQ issues.
The findings suggest that users should be mindful when crafting queries, and exercise caution in selecting neutral prompt language.
arXiv Detail & Related papers (2024-03-15T04:02:24Z) - Large Language Models: A Survey [69.72787936480394]
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks.
LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data.
arXiv Detail & Related papers (2024-02-09T05:37:09Z) - The Political Preferences of LLMs [0.0]
I administer 11 political orientation tests, designed to identify the political preferences of the test taker, to 24 state-of-the-art conversational LLMs.
Most conversational LLMs generate responses that are diagnosed by most political test instruments as manifesting preferences for left-of-center viewpoints.
I demonstrate that LLMs can be steered towards specific locations in the political spectrum through Supervised Fine-Tuning.
arXiv Detail & Related papers (2024-02-02T02:43:10Z) - Measurement in the Age of LLMs: An Application to Ideological Scaling [1.9413548770753526]
This paper explores the use of large language models (LLMs) to navigate the conceptual clutter inherent to social scientific measurement tasks.
We rely on LLMs' remarkable linguistic fluency to elicit ideological scales of both legislators and text.
arXiv Detail & Related papers (2023-12-14T18:34:06Z) - AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations [52.43593893122206]
Alignedcot is an in-context learning technique for invoking Large Language Models.
It achieves consistent and correct step-wise prompts in zero-shot scenarios.
We conduct experiments on mathematical reasoning and commonsense reasoning.
arXiv Detail & Related papers (2023-11-22T17:24:21Z) - Towards Human-Level Text Coding with LLMs: The Case of Fatherhood Roles in Public Policy Documents [19.65846717628022]
Large language models (LLMs) promise automation with better results and less programming.
In this study, we evaluate LLMs on three original coding tasks involving typical complexities encountered in political science settings.
We find that the best prompting strategy consists of providing the LLMs with a detailed codebook, as the one provided to human coders.
arXiv Detail & Related papers (2023-11-20T15:34:45Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
Uncertainty estimation (UE) methods are one path to safer, more responsible, and more effective use of large language models (LLMs)
We introduce LM-Polygraph, a framework with implementations of a battery of state-of-the-art UE methods for LLMs in text generation tasks, with unified program interfaces in Python.
It introduces an extendable benchmark for consistent evaluation of UE techniques by researchers, and a demo web application that enriches the standard chat dialog with confidence scores.
arXiv Detail & Related papers (2023-11-13T15:08:59Z) - Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue
Questions with LLMs [59.74002011562726]
We propose a novel linguistic cue-based chain-of-thoughts (textitCue-CoT) to provide a more personalized and engaging response.
We build a benchmark with in-depth dialogue questions, consisting of 6 datasets in both Chinese and English.
Empirical results demonstrate our proposed textitCue-CoT method outperforms standard prompting methods in terms of both textithelpfulness and textitacceptability on all datasets.
arXiv Detail & Related papers (2023-05-19T16:27:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.