論文の概要: Asynchronous Wireless Federated Learning with Probabilistic Client
Selection
- arxiv url: http://arxiv.org/abs/2311.16741v1
- Date: Tue, 28 Nov 2023 12:39:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 09:27:15.156751
- Title: Asynchronous Wireless Federated Learning with Probabilistic Client
Selection
- Title(参考訳): 確率的クライアント選択による非同期無線フェデレーション学習
- Authors: Jiarong Yang, Yuan Liu, Fangjiong Chen, Wen Chen, Changle Li
- Abstract要約: Federated Learning(FL)は、クライアントがサーバによって調整された機械学習モデルを協調的にトレーニングする、有望な分散学習フレームワークである。
各クライアントはローカル更新を保持し、確率的にローカルモデルを送信する。
我々は,非確率収束問題をグローバルに最適に解くための反復アルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 20.882840344104135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a promising distributed learning framework where
distributed clients collaboratively train a machine learning model coordinated
by a server. To tackle the stragglers issue in asynchronous FL, we consider
that each client keeps local updates and probabilistically transmits the local
model to the server at arbitrary times. We first derive the (approximate)
expression for the convergence rate based on the probabilistic client
selection. Then, an optimization problem is formulated to trade off the
convergence rate of asynchronous FL and mobile energy consumption by joint
probabilistic client selection and bandwidth allocation. We develop an
iterative algorithm to solve the non-convex problem globally optimally.
Experiments demonstrate the superiority of the proposed approach compared with
the traditional schemes.
- Abstract(参考訳): federated learning (fl) は有望な分散学習フレームワークであり、分散クライアントはサーバが協調する機械学習モデルを協調的にトレーニングする。
非同期FLにおけるトラグラー問題に対処するため、各クライアントはローカル更新を保持し、任意のタイミングでローカルモデルをサーバに確率的に送信する。
まず,確率的クライアント選択に基づく収束率の(近似的な)表現を導出する。
そして、非同期FLの収束率と移動エネルギー消費を、連立確率的クライアント選択と帯域割り当てによりトレードオフする最適化問題を定式化する。
我々は,非凸問題をグローバルに解く反復アルゴリズムを開発した。
実験は従来のスキームと比較して提案手法の優位性を示す。
関連論文リスト
- Modality Alignment Meets Federated Broadcasting [9.752555511824593]
フェデレートラーニング(FL)は、ローカルデータを集中化せずに、分散エッジデバイス間でモデルをトレーニングすることで、データのプライバシを保護する強力なアプローチとして登場した。
本稿では,テキストエンコーダをサーバ上に配置し,画像エンコーダをローカルデバイス上で動作させる,モダリティアライメントを利用した新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-24T13:30:03Z) - Cohort Squeeze: Beyond a Single Communication Round per Cohort in Cross-Device Federated Learning [51.560590617691005]
各コホートから「より多くのジュースを抽出できるかどうか」を単一の通信ラウンドでできることよりも検討する。
本手法は,デバイス間通信におけるFLモデルのトレーニングに必要な通信コストを最大74%削減する。
論文 参考訳(メタデータ) (2024-06-03T08:48:49Z) - Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays [0.0]
フェデレートラーニング(FL)は、データを複数の場所に保持するモデル("clients")をセキュアにトレーニングするために提案されている。
FLアルゴリズムの性能を阻害する2つの大きな課題は、階層化クライアントによって引き起こされる長いトレーニング時間と、非イドローカルなデータ分布("client drift")によるモデル精度の低下である。
本稿では,Asynchronous Exact Averaging (AREA, Asynchronous Exact Averaging) を提案する。Asynchronous Exact Averaging (AREA) は,通信を利用して収束を高速化し,拡張性を向上し,クライアント更新頻度の変動によるクライアントのドリフトの補正にクライアントメモリを利用する。
論文 参考訳(メタデータ) (2024-05-16T14:22:49Z) - Achieving Linear Speedup in Asynchronous Federated Learning with
Heterogeneous Clients [30.135431295658343]
フェデレートラーニング(FL)は、異なるクライアントにローカルに保存されているデータを交換したり転送したりすることなく、共通のグローバルモデルを学ぶことを目的としている。
本稿では,DeFedAvgという,効率的な連邦学習(AFL)フレームワークを提案する。
DeFedAvgは、望まれる線形スピードアップ特性を達成する最初のAFLアルゴリズムであり、高いスケーラビリティを示している。
論文 参考訳(メタデータ) (2024-02-17T05:22:46Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
本稿では,クライアントと異なる計算資源をペアリングする,新しい分割フェデレーション学習(SFL)フレームワークを提案する。
グラフエッジ選択問題として,学習遅延の最適化を再構築し,グレディアルゴリズムを提案する。
シミュレーションの結果,提案手法はFLトレーニング速度を大幅に向上し,高い性能を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-08-26T11:10:54Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Adaptive Control of Client Selection and Gradient Compression for
Efficient Federated Learning [28.185096784982544]
フェデレートラーニング(FL)は、複数のクライアントがローカルデータを公開せずに協調的にモデルを訓練することを可能にする。
我々はFedCGと呼ばれる不均一なFLフレームワークを提案し、適応的なクライアント選択と勾配圧縮を行う。
実世界のプロトタイプとシミュレーションの両方の実験により、FedCGは他の方法と比較して最大5.3$times$ Speedupを提供できることが示された。
論文 参考訳(メタデータ) (2022-12-19T14:19:07Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
フェデレートラーニングは、サーバのオーケストレーションの下で、クライアント間で分散されたデータの予測モデルをトレーニングすることを目的としている。
本稿では,クライアント間で不変な因果的特徴を学習するフェデレーション学習のためのゲーム理論フレームワークFL GAMESを提案する。
論文 参考訳(メタデータ) (2022-10-31T22:59:03Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
フェデレートラーニングは、複数のクライアントが協力してグローバルに共有されたモデルを学ぶことを可能にする。
クライアント側とサーバ側の両方の後方部を近似するために,オンラインラプラス近似を用いた新しいFLフレームワークを提案する。
提案手法の利点を実証し,いくつかのベンチマークで最新の結果を得た。
論文 参考訳(メタデータ) (2021-02-03T08:36:58Z) - Faster Non-Convex Federated Learning via Global and Local Momentum [57.52663209739171]
textttFedGLOMOは最初の(一階)FLtexttFedGLOMOアルゴリズムです。
クライアントとサーバ間の通信においても,我々のアルゴリズムは確実に最適である。
論文 参考訳(メタデータ) (2020-12-07T21:05:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。