Model-Based Reinforcement Learning for Control of Strongly-Disturbed Unsteady Aerodynamic Flows
- URL: http://arxiv.org/abs/2408.14685v1
- Date: Mon, 26 Aug 2024 23:21:44 GMT
- Title: Model-Based Reinforcement Learning for Control of Strongly-Disturbed Unsteady Aerodynamic Flows
- Authors: Zhecheng Liu, Diederik Beckers, Jeff D. Eldredge,
- Abstract summary: We propose a model-based reinforcement learning (MBRL) approach by incorporating a novel reduced-order model as a surrogate for the full environment.
The robustness and generalizability of the model is demonstrated in two distinct flow environments.
We demonstrate that the policy learned in the reduced-order environment translates to an effective control strategy in the full CFD environment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The intrinsic high dimension of fluid dynamics is an inherent challenge to control of aerodynamic flows, and this is further complicated by a flow's nonlinear response to strong disturbances. Deep reinforcement learning, which takes advantage of the exploratory aspects of reinforcement learning (RL) and the rich nonlinearity of a deep neural network, provides a promising approach to discover feasible control strategies. However, the typical model-free approach to reinforcement learning requires a significant amount of interaction between the flow environment and the RL agent during training, and this high training cost impedes its development and application. In this work, we propose a model-based reinforcement learning (MBRL) approach by incorporating a novel reduced-order model as a surrogate for the full environment. The model consists of a physics-augmented autoencoder, which compresses high-dimensional CFD flow field snaphsots into a three-dimensional latent space, and a latent dynamics model that is trained to accurately predict the long-time dynamics of trajectories in the latent space in response to action sequences. The robustness and generalizability of the model is demonstrated in two distinct flow environments, a pitching airfoil in a highly disturbed environment and a vertical-axis wind turbine in a disturbance-free environment. Based on the trained model in the first problem, we realize an MBRL strategy to mitigate lift variation during gust-airfoil encounters. We demonstrate that the policy learned in the reduced-order environment translates to an effective control strategy in the full CFD environment.
Related papers
- Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback [16.46487826869775]
We propose a novel framework, Neural Internal Model Control, which integrates model-based control with RL-based control to enhance robustness.
Our framework streamlines the predictive model by applying Newton-Euler equations for rigid-body dynamics, eliminating the need to capture complex high-dimensional nonlinearities.
We demonstrate the effectiveness of our framework on both quadrotors and quadrupedal robots, achieving superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-11-20T07:07:42Z) - Physics Enhanced Residual Policy Learning (PERPL) for safety cruising in mixed traffic platooning under actuator and communication delay [8.172286651098027]
Linear control models have gained extensive application in vehicle control due to their simplicity, ease of use, and support for stability analysis.
Reinforcement learning (RL) models, on the other hand, offer adaptability but suffer from a lack of interpretability and generalization capabilities.
This paper aims to develop a family of RL-based controllers enhanced by physics-informed policies.
arXiv Detail & Related papers (2024-09-23T23:02:34Z) - Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
This paper introduces a knowledge-informed model-based residual reinforcement learning framework.
It integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics.
We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch.
arXiv Detail & Related papers (2024-08-30T16:16:57Z) - Expressive and Generalizable Low-rank Adaptation for Large Models via Slow Cascaded Learning [55.5715496559514]
LoRA Slow Cascade Learning (LoRASC) is an innovative technique designed to enhance LoRA's expressiveness and generalization capabilities.
Our approach augments expressiveness through a cascaded learning strategy that enables a mixture-of-low-rank adaptation, thereby increasing the model's ability to capture complex patterns.
arXiv Detail & Related papers (2024-07-01T17:28:59Z) - Two-step dynamic obstacle avoidance [0.0]
This paper proposes a two-step architecture for handling dynamic obstacle avoidance (DOA) tasks by combining supervised and reinforcement learning (RL)
In the first step, we introduce a data-driven approach to estimate the collision risk (CR) of an obstacle using a recurrent neural network.
In the second step, we include these CR estimates into the observation space of an RL agent to increase its situational awareness.
arXiv Detail & Related papers (2023-11-28T14:55:50Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
We propose Iso-Dream++, a model-based reinforcement learning approach.
We perform policy optimization based on the decoupled latent imaginations.
This enables long-horizon visuomotor control tasks to benefit from isolating mixed dynamics sources in the wild.
arXiv Detail & Related papers (2023-03-27T02:55:56Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Turbulence control in plane Couette flow using low-dimensional neural
ODE-based models and deep reinforcement learning [0.0]
"DManD-RL" (data-driven manifold dynamics-RL) generates a data-driven low-dimensional model of our system.
We train an RL control agent, yielding a 440-fold speedup over training on a numerical simulation.
The agent learns a policy that laminarizes 84% of unseen DNS test trajectories within 900 time units.
arXiv Detail & Related papers (2023-01-28T05:47:10Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Context-aware Dynamics Model for Generalization in Model-Based
Reinforcement Learning [124.9856253431878]
We decompose the task of learning a global dynamics model into two stages: (a) learning a context latent vector that captures the local dynamics, then (b) predicting the next state conditioned on it.
In order to encode dynamics-specific information into the context latent vector, we introduce a novel loss function that encourages the context latent vector to be useful for predicting both forward and backward dynamics.
The proposed method achieves superior generalization ability across various simulated robotics and control tasks, compared to existing RL schemes.
arXiv Detail & Related papers (2020-05-14T08:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.