Foundational Moral Values for AI Alignment
- URL: http://arxiv.org/abs/2311.17017v1
- Date: Tue, 28 Nov 2023 18:11:24 GMT
- Title: Foundational Moral Values for AI Alignment
- Authors: Betty Li Hou, Brian Patrick Green
- Abstract summary: We present five core, foundational values, drawn from moral philosophy and built on the requisites for human existence: survival, sustainable intergenerational existence, society, education, and truth.
We show that these values not only provide a clearer direction for technical alignment work, but also serve as a framework to highlight threats and opportunities from AI systems to both obtain and sustain these values.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving the AI alignment problem requires having clear, defensible values
towards which AI systems can align. Currently, targets for alignment remain
underspecified and do not seem to be built from a philosophically robust
structure. We begin the discussion of this problem by presenting five core,
foundational values, drawn from moral philosophy and built on the requisites
for human existence: survival, sustainable intergenerational existence,
society, education, and truth. We show that these values not only provide a
clearer direction for technical alignment work, but also serve as a framework
to highlight threats and opportunities from AI systems to both obtain and
sustain these values.
Related papers
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - ValueCompass: A Framework of Fundamental Values for Human-AI Alignment [15.35489011078817]
We introduce Value, a framework of fundamental values, grounded in psychological theory and a systematic review.
We apply Value to measure the value alignment of humans and language models (LMs) across four real-world vignettes.
Our findings uncover risky misalignment between humans and LMs, such as LMs agreeing with values like "Choose Own Goals", which are largely disagreed by humans.
arXiv Detail & Related papers (2024-09-15T02:13:03Z) - Dynamic Normativity: Necessary and Sufficient Conditions for Value Alignment [0.0]
We find "alignment" a problem related to the challenges of expressing human goals and values in a manner that artificial systems can follow without leading to unwanted adversarial effects.
This work addresses alignment as a technical-philosophical problem that requires solid philosophical foundations and practical implementations that bring normative theory to AI system development.
arXiv Detail & Related papers (2024-06-16T18:37:31Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - AI Alignment: A Comprehensive Survey [70.35693485015659]
AI alignment aims to make AI systems behave in line with human intentions and values.
We identify four principles as the key objectives of AI alignment: Robustness, Interpretability, Controllability, and Ethicality.
We decompose current alignment research into two key components: forward alignment and backward alignment.
arXiv Detail & Related papers (2023-10-30T15:52:15Z) - Connecting the Dots in Trustworthy Artificial Intelligence: From AI
Principles, Ethics, and Key Requirements to Responsible AI Systems and
Regulation [22.921683578188645]
We argue that attaining truly trustworthy AI concerns the trustworthiness of all processes and actors that are part of the system's life cycle.
A more holistic vision contemplates four essential axes: the global principles for ethical use and development of AI-based systems, a philosophical take on AI ethics, and a risk-based approach to AI regulation.
Our multidisciplinary vision of trustworthy AI culminates in a debate on the diverging views published lately about the future of AI.
arXiv Detail & Related papers (2023-05-02T09:49:53Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - The Challenge of Value Alignment: from Fairer Algorithms to AI Safety [2.28438857884398]
This paper addresses the question of how to align AI systems with human values.
It situates it within a wider body of thought regarding technology and value.
arXiv Detail & Related papers (2021-01-15T11:03:15Z) - Artificial Intelligence, Values and Alignment [2.28438857884398]
normative and technical aspects of the AI alignment problem are interrelated.
It is important to be clear about the goal of alignment.
The central challenge for theorists is not to identify 'true' moral principles for AI.
arXiv Detail & Related papers (2020-01-13T10:32:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.