RoKEPG: RoBERTa and Knowledge Enhancement for Prescription Generation of
Traditional Chinese Medicine
- URL: http://arxiv.org/abs/2311.17307v1
- Date: Wed, 29 Nov 2023 01:59:38 GMT
- Title: RoKEPG: RoBERTa and Knowledge Enhancement for Prescription Generation of
Traditional Chinese Medicine
- Authors: Hua Pu, Jiacong Mi, Shan Lu, Jieyue He
- Abstract summary: We propose a RoBERTa and Knowledge Enhancement model for Prescription Generation of Traditional Chinese Medicine (RoKEPG)
RoKEPG is guided to generate TCM prescriptions by introducing four classes of knowledge of TCM through the attention mask matrix.
Experimental results on the publicly available TCM prescription dataset show that RoKEPG improves the F1 metric by about 2% over the baseline model.
- Score: 2.1098688291287475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional Chinese medicine (TCM) prescription is the most critical form of
TCM treatment, and uncovering the complex nonlinear relationship between
symptoms and TCM is of great significance for clinical practice and assisting
physicians in diagnosis and treatment. Although there have been some studies on
TCM prescription generation, these studies consider a single factor and
directly model the symptom-prescription generation problem mainly based on
symptom descriptions, lacking guidance from TCM knowledge. To this end, we
propose a RoBERTa and Knowledge Enhancement model for Prescription Generation
of Traditional Chinese Medicine (RoKEPG). RoKEPG is firstly pre-trained by our
constructed TCM corpus, followed by fine-tuning the pre-trained model, and the
model is guided to generate TCM prescriptions by introducing four classes of
knowledge of TCM through the attention mask matrix. Experimental results on the
publicly available TCM prescription dataset show that RoKEPG improves the F1
metric by about 2% over the baseline model with the best results.
Related papers
- Intelligent Understanding of Large Language Models in Traditional Chinese Medicine Based on Prompt Engineering Framework [3.990633038739491]
We propose TCM-Prompt, a framework that integrates various pre-trained language models (PLMs), templates, tokenization, and verbalization methods.
We conducted experiments on disease classification, syndrome identification, herbal medicine recommendation, and general NLP tasks.
arXiv Detail & Related papers (2024-10-25T10:24:30Z) - TCM-FTP: Fine-Tuning Large Language Models for Herbal Prescription Prediction [17.041413449854915]
Traditional Chinese medicine relies on specific combinations of herbs in prescriptions to treat symptoms and signs, a practice that spans thousands of years.
We introduce DigestDS, a new dataset containing practical medical records from experienced experts in digestive system diseases.
We also propose a method, TCM-FTP (TCM Fine-Tuning Pre-trained), to leverage pre-trained large language models (LLMs) through supervised fine-tuning on DigestDS.
arXiv Detail & Related papers (2024-07-15T08:06:37Z) - Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients [47.68396964741116]
We propose a novel model called Robust and Accurate REcommendations for Medication (RAREMed) to enhance accuracy for rare diseases.
It employs a transformer encoder with a unified input sequence approach to capture complex relationships among disease and procedure codes.
It provides accurate drug sets for both rare and common disease patients, thereby mitigating unfairness in medication recommendation systems.
arXiv Detail & Related papers (2024-03-26T14:36:22Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
We propose ChiMed-GPT, a benchmark LLM designed explicitly for Chinese medical domain.
ChiMed-GPT undergoes a comprehensive training regime with pre-training, SFT, and RLHF.
We analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients.
arXiv Detail & Related papers (2023-11-10T12:25:32Z) - TCM-GPT: Efficient Pre-training of Large Language Models for Domain
Adaptation in Traditional Chinese Medicine [11.537289359051975]
We propose a novel TCMDA (TCM Domain Adaptation) approach, efficient pre-training with domain-specific corpus.
Specifically, we first construct a large TCM-specific corpus, TCM-Corpus-1B, by identifying domain keywords and retreving from general corpus.
Then, our TCMDA leverages the LoRA which freezes the pretrained model's weights and uses rank decomposition matrices to efficiently train specific dense layers for pre-training and fine-tuning.
arXiv Detail & Related papers (2023-11-03T08:54:50Z) - Sequential Condition Evolved Interaction Knowledge Graph for Traditional
Chinese Medicine Recommendation [9.953064118341812]
Traditional Chinese Medicine (TCM) has a rich history of utilizing natural herbs to treat a diversity of illnesses.
Existing TCM recommendation approaches overlook the changes in patient status and only explore potential patterns between symptoms and prescriptions.
We propose a novel framework that treats the model as a sequential prescription-making problem by considering the dynamics of the patient's condition.
arXiv Detail & Related papers (2023-05-29T03:13:39Z) - Conditional Generation Net for Medication Recommendation [73.09366442098339]
Medication recommendation targets to provide a proper set of medicines according to patients' diagnoses, which is a critical task in clinics.
We propose Conditional Generation Net (COGNet) which introduces a novel copy-or-predict mechanism to generate the set of medicines.
We validate the proposed model on the public MIMIC data set, and the experimental results show that the proposed model can outperform state-of-the-art approaches.
arXiv Detail & Related papers (2022-02-14T10:16:41Z) - RecoMed: A Knowledge-Aware Recommender System for Hypertension
Medications [1.2633386045916444]
This paper aims to develop a medicine recommender system called RecoMed to aid the physician in the prescription process of hypertension.
A list of recommended medicines is provided as the system's output, and physicians can choose one or more of the medicines based on the patient's clinical symptoms.
arXiv Detail & Related papers (2022-01-09T08:01:41Z) - Medical-VLBERT: Medical Visual Language BERT for COVID-19 CT Report
Generation With Alternate Learning [70.71564065885542]
We propose to use the medical visual language BERT (Medical-VLBERT) model to identify the abnormality on the COVID-19 scans.
This model adopts an alternate learning strategy with two procedures that are knowledge pretraining and transferring.
For automatic medical report generation on the COVID-19 cases, we constructed a dataset of 368 medical findings in Chinese and 1104 chest CT scans.
arXiv Detail & Related papers (2021-08-11T07:12:57Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
We build a dataset by collecting symptoms of PD patients, and their prescription drug provided by neurologists.
Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug.
For the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model.
arXiv Detail & Related papers (2020-07-31T14:34:35Z) - Syndrome-aware Herb Recommendation with Multi-Graph Convolution Network [49.85331664178196]
Herb recommendation plays a crucial role in the therapeutic process of Traditional Chinese Medicine.
We propose a new method that takes the implicit syndrome induction process into account for herb recommendation.
arXiv Detail & Related papers (2020-02-20T05:56:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.