論文の概要: RADAP: A Robust and Adaptive Defense Against Diverse Adversarial Patches
on Face Recognition
- arxiv url: http://arxiv.org/abs/2311.17339v1
- Date: Wed, 29 Nov 2023 03:37:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 22:40:41.949015
- Title: RADAP: A Robust and Adaptive Defense Against Diverse Adversarial Patches
on Face Recognition
- Title(参考訳): RADAP: 顔認証における異種対立パッチに対するロバストで適応的な防御
- Authors: Xiaoliang Liu, Furao Shen, Jian Zhao, Changhai Nie
- Abstract要約: ディープラーニングを利用した顔認識システムは、敵の攻撃に対して脆弱である。
多様な敵パッチに対する堅牢かつ適応的な防御機構であるRADAPを提案する。
RADAPの有効性を検証するための総合的な実験を行った。
- 参考スコア(独自算出の注目度): 13.618387142029663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face recognition (FR) systems powered by deep learning have become widely
used in various applications. However, they are vulnerable to adversarial
attacks, especially those based on local adversarial patches that can be
physically applied to real-world objects. In this paper, we propose RADAP, a
robust and adaptive defense mechanism against diverse adversarial patches in
both closed-set and open-set FR systems. RADAP employs innovative techniques,
such as FCutout and F-patch, which use Fourier space sampling masks to improve
the occlusion robustness of the FR model and the performance of the patch
segmenter. Moreover, we introduce an edge-aware binary cross-entropy (EBCE)
loss function to enhance the accuracy of patch detection. We also present the
split and fill (SAF) strategy, which is designed to counter the vulnerability
of the patch segmenter to complete white-box adaptive attacks. We conduct
comprehensive experiments to validate the effectiveness of RADAP, which shows
significant improvements in defense performance against various adversarial
patches, while maintaining clean accuracy higher than that of the undefended
Vanilla model.
- Abstract(参考訳): ディープラーニングを利用した顔認識(FR)システムは様々な用途で広く利用されている。
しかし、特に実際のオブジェクトに物理的に適用できるローカルな敵パッチに基づく攻撃に対して脆弱である。
本稿では,閉集合系と開集合系の両方において,多様な敵パッチに対する堅牢かつ適応的な防御機構であるRADAPを提案する。
RADAP は FCutout や F-patch といった革新的な技術を採用しており、F-patch はフーリエ空間サンプリングマスクを用いて FR モデルの閉塞堅牢性とパッチセグメンタの性能を向上させる。
さらに、パッチ検出の精度を高めるために、エッジ対応バイナリクロスエントロピー(EBCE)損失関数を導入する。
また,パッチセグナーの脆弱性に対抗してホワイトボックス適応攻撃を完遂するslit and fill (saf)戦略を提案する。
我々は,radapの有効性を検証するための総合的な実験を行い,非防御バニラモデルよりもクリーンな精度を維持しつつ,様々な敵パッチに対する防御性能を大幅に向上させた。
関連論文リスト
- Real-world Adversarial Defense against Patch Attacks based on Diffusion Model [34.86098237949215]
本稿では,DIFfusionをベースとした新しいDeFenderフレームワークであるDIFFenderを紹介する。
我々のアプローチの核心は、AAP(Adversarial Anomaly Perception)現象の発見である。
DIFFenderは、統一拡散モデルフレームワークにパッチのローカライゼーションと復元のタスクをシームレスに統合する。
論文 参考訳(メタデータ) (2024-09-14T10:38:35Z) - Iterative Window Mean Filter: Thwarting Diffusion-based Adversarial Purification [26.875621618432504]
顔認証システムは、敵攻撃のような目立たない摂動に敏感なため、信頼性が低い。
我々はIWMF (Iterative Window Mean Filter) と呼ばれる,新しい非深層学習に基づく画像フィルタを開発した。
我々は,IWMFと拡散モデルを統合した,IWMF-Diffという逆浄化のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-20T09:19:43Z) - Towards Robust Semantic Segmentation against Patch-based Attack via Attention Refinement [68.31147013783387]
我々は,アテンション機構がパッチベースの敵攻撃に弱いことを観察した。
本稿では,意味的セグメンテーションモデルの堅牢性を改善するために,ロバスト注意機構(RAM)を提案する。
論文 参考訳(メタデータ) (2024-01-03T13:58:35Z) - DIFFender: Diffusion-Based Adversarial Defense against Patch Attacks [34.86098237949214]
敵対的攻撃、特にパッチ攻撃は、ディープラーニングモデルの堅牢性と信頼性に重大な脅威をもたらす。
本稿では,テキスト誘導拡散モデルを用いてパッチ攻撃に対処する新しい防御フレームワークであるDIFFenderを紹介する。
DIFFenderは、パッチのローカライゼーションと復元の2つのタスクを単一の拡散モデルフレームワークに統合する。
論文 参考訳(メタデータ) (2023-06-15T13:33:27Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Simultaneously Optimizing Perturbations and Positions for Black-box
Adversarial Patch Attacks [13.19708582519833]
敵パッチは、ディープニューラルネットワークの堅牢性に重大なリスクをもたらす、現実世界の敵攻撃の重要な形態である。
従来の方法は、貼付位置を固定しながら摂動値を最適化するか、パッチの内容を修正しながら位置を操作することにより、敵パッチを生成する。
敵パッチの位置と摂動を同時に最適化し,ブラックボックス設定において高い攻撃成功率が得られる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-12-26T02:48:37Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Benchmarking Adversarial Patch Against Aerial Detection [11.591143898488312]
適応パッチに基づく新しい物理攻撃(AP-PA)フレームワークを提案する。
AP-PAは、物理力学と様々なスケールに適応する逆パッチを生成する。
航空探知作業における敵パッチの攻撃効果を評価するため, 包括的, 一貫性, 厳密なベンチマークを最初に確立した。
論文 参考訳(メタデータ) (2022-10-30T07:55:59Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z) - Boosting Adversarial Training with Hypersphere Embedding [53.75693100495097]
敵対的訓練は、ディープラーニングモデルに対する敵対的攻撃に対する最も効果的な防御の1つである。
本研究では,超球埋め込み機構をATプロシージャに組み込むことを提唱する。
我々は,CIFAR-10 と ImageNet データセットに対する幅広い敵対攻撃の下で本手法を検証した。
論文 参考訳(メタデータ) (2020-02-20T08:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。