論文の概要: A transductive few-shot learning approach for classification of digital
histopathological slides from liver cancer
- arxiv url: http://arxiv.org/abs/2311.17740v1
- Date: Wed, 29 Nov 2023 15:44:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 20:42:04.493358
- Title: A transductive few-shot learning approach for classification of digital
histopathological slides from liver cancer
- Title(参考訳): 肝癌からのデジタル組織学的スライス分類のためのトランスダクティブ・数ショット学習法
- Authors: Aymen Sadraoui (OPIS, CVN), S\'egol\`ene Martin (OPIS, CVN), Eliott
Barbot (OPIS, CVN), Astrid Laurent-Bellue, Jean-Christophe Pesquet (OPIS,
CVN), Catherine Guettier, Ismail Ben Ayed (ETS)
- Abstract要約: 本論文は,2次元病理組織パッチの分類法として,少数ショット学習を用いた新しいアプローチを提案する。
病理組織学スライドにスライディングウインドウ手法を適用することにより,トランスダクティブラーニングの実践的メリットを解説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a new approach for classifying 2D histopathology patches
using few-shot learning. The method is designed to tackle a significant
challenge in histopathology, which is the limited availability of labeled data.
By applying a sliding window technique to histopathology slides, we illustrate
the practical benefits of transductive learning (i.e., making joint predictions
on patches) to achieve consistent and accurate classification. Our approach
involves an optimization-based strategy that actively penalizes the prediction
of a large number of distinct classes within each window. We conducted
experiments on histopathological data to classify tissue classes in digital
slides of liver cancer, specifically hepatocellular carcinoma. The initial
results show the effectiveness of our method and its potential to enhance the
process of automated cancer diagnosis and treatment, all while reducing the
time and effort required for expert annotation.
- Abstract(参考訳): 本稿では,2次元病理組織学的パッチの分類法を提案する。
この方法は、ラベル付きデータの限られた可用性である病理学における重要な課題に取り組むように設計されている。
病理組織学スライドにスライディングウインドウ手法を適用することで,トランスダクティブ学習(パッチによる共同予測)の実用的メリットを,一貫性と正確な分類を実現するために示す。
提案手法は,各ウィンドウ内の多数の異なるクラスの予測を積極的にペナルティ化する最適化ベースの戦略である。
肝癌, 特に肝細胞癌のデジタルスライドにおける組織クラス分類のための病理組織学的データの実験を行った。
以上より,本手法の有効性と,がんの診断と治療のプロセスを強化する可能性を示すとともに,専門家の注記に要する時間と労力を削減した。
関連論文リスト
- TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
トポロジカルデータ分析は、異なる色チャネルにわたるトポロジカルパターンの評価を通じて重要な情報を抽出することで、ユニークなアプローチを提供する。
卵巣癌と乳癌では, トポロジカルな特徴を取り入れることで, 腫瘍型の分化が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-13T12:24:13Z) - NMGrad: Advancing Histopathological Bladder Cancer Grading with Weakly Supervised Deep Learning [1.3911081328487294]
組織学的スライスを用いた膀胱癌評価のためのパイプラインを提案する。
異なる倍率レベルでウロテリウム組織タイルを抽出し、特徴抽出のために畳み込みニューラルネットワークを用いて処理する。
グレードの予測に注意を払って、ネストされた複数のインスタンス学習アプローチを採用している。
論文 参考訳(メタデータ) (2024-05-24T07:02:39Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Robust Tumor Detection from Coarse Annotations via Multi-Magnification
Ensembles [11.070094685209598]
乳癌患者のセンチネルリンパ節のオープンなCAMELYON16データセットにおいて,転移の検出精度を大幅に向上する新しいアンサンブル法を提案する。
臨床的に癌診断に有用であることを示すため,本法により良好な結果が得られた。
論文 参考訳(メタデータ) (2023-03-29T08:41:22Z) - Domain adaptation using optimal transport for invariant learning using
histopathology datasets [13.133231212085988]
病理組織学は癌を含む多くの疾患の診断に重要である。
計算技術はバッチ効果によって制限され、準備プロトコルやスキャナの違いのような技術的な要素がスライドの外観を変える。
そこで本研究では,未確認施設のデータに対する組織モデルの一般化を改善するための領域適応手法を提案する。
論文 参考訳(メタデータ) (2023-03-03T22:19:19Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
病理学者は、ガラススライド上の針生検の組織を調べて前立腺がんを診断し、診断する。
がんの重症度と転移リスクは、前立腺の組織と形態に基づくスコアであるGleason gradeによって決定される。
本稿では,病理学者のtextitmodus operandi に従って,個々の腺のマルチスケールパッチを分離・分類する自動ワークフローを提案する。
論文 参考訳(メタデータ) (2022-09-27T14:08:19Z) - End-to-end Learning for Image-based Detection of Molecular Alterations
in Digital Pathology [1.916179040410189]
デジタル病理学におけるスライド画像全体(WSI)の分類への現在のアプローチは、主に2段階学習パイプラインを利用している。
このようなアプローチの大きな欠点は、臨床ルーチンで取得されていないタスク固有の補助ラベルの要件である。
本稿では,WSI分類のための新しい学習パイプラインを提案する。
論文 参考訳(メタデータ) (2022-06-30T20:30:33Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - OncoPetNet: A Deep Learning based AI system for mitotic figure counting
on H&E stained whole slide digital images in a large veterinary diagnostic
lab setting [47.38796928990688]
OncoPetNetの開発において,複数の最先端ディープラーニング技術を用いて病理組織像分類と有糸体像検出を行った。
提案システムは,14種類の癌に対して,ヒトのエキスパートベースラインと比較して,41例の有糸分裂計数性能を有意に向上させた。
デプロイでは、2つのセンターで1日3,323枚のデジタル全スライド画像を処理する高スループット獣医診断サービスにおいて、効果的な0.27分/スライダー推論が達成された。
論文 参考訳(メタデータ) (2021-08-17T20:01:33Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。