Enhancing Post-Hoc Explanation Benchmark Reliability for Image
Classification
- URL: http://arxiv.org/abs/2311.17876v1
- Date: Wed, 29 Nov 2023 18:21:24 GMT
- Title: Enhancing Post-Hoc Explanation Benchmark Reliability for Image
Classification
- Authors: Tristan Gomez, Harold Mouch\`ere
- Abstract summary: Empirical evaluations demonstrate significant improvements in benchmark reliability across metrics, datasets, and post-hoc methods.
This pioneering work establishes a foundation for more reliable evaluation practices in the realm of post-hoc explanation methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks, while powerful for image classification, often operate
as "black boxes," complicating the understanding of their decision-making
processes. Various explanation methods, particularly those generating saliency
maps, aim to address this challenge. However, the inconsistency issues of
faithfulness metrics hinder reliable benchmarking of explanation methods. This
paper employs an approach inspired by psychometrics, utilizing Krippendorf's
alpha to quantify the benchmark reliability of post-hoc methods in image
classification. The study proposes model training modifications, including
feeding perturbed samples and employing focal loss, to enhance robustness and
calibration. Empirical evaluations demonstrate significant improvements in
benchmark reliability across metrics, datasets, and post-hoc methods. This
pioneering work establishes a foundation for more reliable evaluation practices
in the realm of post-hoc explanation methods, emphasizing the importance of
model robustness in the assessment process.
Related papers
- Adversarial Robustness Overestimation and Instability in TRADES [4.063518154926961]
TRADES sometimes yields disproportionately high PGD validation accuracy compared to the AutoAttack testing accuracy in the multiclass classification task.
This discrepancy highlights a significant overestimation of robustness for these instances, potentially linked to gradient masking.
arXiv Detail & Related papers (2024-10-10T07:32:40Z) - Learning Confidence Bounds for Classification with Imbalanced Data [42.690254618937196]
We propose a novel framework that leverages learning theory and concentration inequalities to overcome the shortcomings of traditional solutions.
Our method can effectively adapt to the varying degrees of imbalance across different classes, resulting in more robust and reliable classification outcomes.
arXiv Detail & Related papers (2024-07-16T16:02:27Z) - Backdoor-based Explainable AI Benchmark for High Fidelity Evaluation of Attribution Methods [49.62131719441252]
Attribution methods compute importance scores for input features to explain the output predictions of deep models.
In this work, we first identify a set of fidelity criteria that reliable benchmarks for attribution methods are expected to fulfill.
We then introduce a Backdoor-based eXplainable AI benchmark (BackX) that adheres to the desired fidelity criteria.
arXiv Detail & Related papers (2024-05-02T13:48:37Z) - Toward Understanding the Disagreement Problem in Neural Network Feature Attribution [0.8057006406834466]
neural networks have demonstrated their remarkable ability to discern intricate patterns and relationships from raw data.
Understanding the inner workings of these black box models remains challenging, yet crucial for high-stake decisions.
Our work addresses this confusion by investigating the explanations' fundamental and distributional behavior.
arXiv Detail & Related papers (2024-04-17T12:45:59Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
Post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions.
We propose three novel evaluation schemes to more reliably measure the faithfulness of those methods.
We use these evaluation schemes to study strengths and shortcomings of some widely used attribution methods over a wide range of models.
arXiv Detail & Related papers (2023-03-21T14:24:58Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Who Explains the Explanation? Quantitatively Assessing Feature
Attribution Methods [0.0]
We propose a novel evaluation metric -- the Focus -- designed to quantify the faithfulness of explanations.
We show the robustness of the metric through randomization experiments, and then use Focus to evaluate and compare three popular explainability techniques.
Our results find LRP and GradCAM to be consistent and reliable, while the latter remains most competitive even when applied to poorly performing models.
arXiv Detail & Related papers (2021-09-28T07:10:24Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Cross Learning in Deep Q-Networks [82.20059754270302]
We propose a novel cross Q-learning algorithm, aim at alleviating the well-known overestimation problem in value-based reinforcement learning methods.
Our algorithm builds on double Q-learning, by maintaining a set of parallel models and estimate the Q-value based on a randomly selected network.
arXiv Detail & Related papers (2020-09-29T04:58:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.