論文の概要: Enhancing Cyber-Resilience in Integrated Energy System Scheduling with Demand Response Using Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2311.17941v2
- Date: Sun, 03 Nov 2024 04:27:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:25:46.661407
- Title: Enhancing Cyber-Resilience in Integrated Energy System Scheduling with Demand Response Using Deep Reinforcement Learning
- Title(参考訳): 深層強化学習を用いた需要応答を考慮した統合エネルギーシステムスケジューリングにおけるサイバーレジリエンスの強化
- Authors: Yang Li, Wenjie Ma, Yuanzheng Li, Sen Li, Zhe Chen, Mohammad Shahidehpor,
- Abstract要約: 本稿では, 状態適応型深部強化学習(DRL)に基づくモデルレスレジリエンススケジューリング手法を提案する。
提案手法は、電力・ガス・熱可塑性負荷の相互作用能力を調べるためのIDRプログラムを設計する。
スケジューリング戦略に対するサイバー攻撃の影響を軽減するため,SA-SAC (State-adversarial soft actor-critic)アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 11.223780653355437
- License:
- Abstract: Optimally scheduling multi-energy flow is an effective method to utilize renewable energy sources (RES) and improve the stability and economy of integrated energy systems (IES). However, the stable demand-supply of IES faces challenges from uncertainties that arise from RES and loads, as well as the increasing impact of cyber-attacks with advanced information and communication technologies adoption. To address these challenges, this paper proposes an innovative model-free resilience scheduling method based on state-adversarial deep reinforcement learning (DRL) for integrated demand response (IDR)-enabled IES. The proposed method designs an IDR program to explore the interaction ability of electricity-gas-heat flexible loads. Additionally, the state-adversarial Markov decision process (SA-MDP) model characterizes the energy scheduling problem of IES under cyber-attack, incorporating cyber-attacks as adversaries directly into the scheduling process. The state-adversarial soft actor-critic (SA-SAC) algorithm is proposed to mitigate the impact of cyber-attacks on the scheduling strategy, integrating adversarial training into the learning process to against cyber-attacks. Simulation results demonstrate that our method is capable of adequately addressing the uncertainties resulting from RES and loads, mitigating the impact of cyber-attacks on the scheduling strategy, and ensuring a stable demand supply for various energy sources. Moreover, the proposed method demonstrates resilience against cyber-attacks. Compared to the original soft actor-critic (SAC) algorithm, it achieves a 10% improvement in economic performance under cyber-attack scenarios.
- Abstract(参考訳): 多エネルギー流の最適スケジューリングは、再生可能エネルギー源(RES)を有効利用し、統合エネルギーシステム(IES)の安定性と経済性を改善する方法である。
しかし、IESの安定した需要供給は、RESや負荷から生じる不確実性や、高度な情報や通信技術の導入によるサイバー攻撃の影響の増大による課題に直面している。
これらの課題に対処するため,本研究では,IDR対応IESのための状態逆深部強化学習(DRL)に基づくモデルレスレジリエンススケジューリング手法を提案する。
提案手法は、電力・ガス・熱可塑性負荷の相互作用能力を調べるためのIDRプログラムを設計する。
さらに、SA-MDPモデルでは、サイバーアタック中のIESのエネルギースケジューリング問題を特徴付け、サイバーアタックを直接スケジューリングプロセスに組み込む。
SACアルゴリズムは,サイバー攻撃がスケジューリング戦略に与える影響を軽減するために提案され,学習プロセスに敵の訓練を統合することでサイバー攻撃に対処する。
シミュレーションの結果,RESと負荷による不確実性に適切に対処し,サイバー攻撃がスケジュール戦略に与える影響を軽減し,様々なエネルギー源に対する安定した需要供給を確保することが可能であることが示唆された。
さらに,サイバー攻撃に対するレジリエンスを示す手法を提案する。
ソフトアクター・クリティック(SAC)アルゴリズムと比較して、サイバー攻撃シナリオ下での経済性能が10%向上する。
関連論文リスト
- Optimizing Load Scheduling in Power Grids Using Reinforcement Learning and Markov Decision Processes [0.0]
本稿では,動的負荷スケジューリングの課題に対処する強化学習(RL)手法を提案する。
提案手法は実時間負荷スケジューリングのためのロバストでスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2024-10-23T09:16:22Z) - Threat-Informed Cyber Resilience Index: A Probabilistic Quantitative Approach to Measure Defence Effectiveness Against Cyber Attacks [0.36832029288386137]
本稿では、サイバー攻撃(キャンプ)に対する組織の防御効果を定量化するための、脅威に富んだ確率的アプローチであるサイバー抵抗指数(CRI)を紹介する。
Threat-Intelligence Based Security Assessment (TIBSA) の方法論に基づいて、複雑な脅威のインテリジェンスを、ストックマーケットインデックスに似た、実行可能な統一されたメトリクスに変換する数学的モデルを提示します。
論文 参考訳(メタデータ) (2024-06-27T17:51:48Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
我々は,現実の制約に合わせたスマートグリッドの安定性予測システムを対象とした,新たな敵攻撃GAN-GRIDを提案する。
以上の結果から,データやモデル知識を欠いた,安定度モデルのみに武装した敵が,攻撃成功率0.99の安定度でデータを作成できることが判明した。
論文 参考訳(メタデータ) (2024-05-20T14:43:46Z) - Embodied Laser Attack:Leveraging Scene Priors to Achieve Agent-based Robust Non-contact Attacks [13.726534285661717]
本稿では,非接触レーザー攻撃を動的に調整する新しい枠組みであるEmbodied Laser Attack (ELA)を紹介する。
認識モジュールのために,ERAは交通シーンの本質的な事前知識に基づいて,局所的な視点変換ネットワークを革新的に開発してきた。
決定と制御モジュールのために、ERAは時間を要するアルゴリズムを採用する代わりに、データ駆動の強化学習で攻撃エージェントを訓練する。
論文 参考訳(メタデータ) (2023-12-15T06:16:17Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
生成的人工知能の最近の進歩は、機械学習トレーニングの需要が急増し、エネルギー消費の大幅な増加によるコスト負担と環境問題を引き起こしている。
地理的に分散したクラウドデータセンタ間でのトレーニングジョブのスケジューリングは、安価で低炭素エネルギーのコンピューティング能力の使用を最適化する機会を浮き彫りにする。
本研究では,実生活におけるワークロードパターン,エネルギー価格,炭素強度を組み込んだクラウドシステムと対話することで,マルチエージェント強化学習とアクタクリティカルな手法に基づく最適協調スケジューリング戦略の学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-17T02:12:30Z) - Phase Shift Design in RIS Empowered Wireless Networks: From Optimization
to AI-Based Methods [83.98961686408171]
再構成可能なインテリジェントサーフェス(RIS)は、無線ネットワークのための無線伝搬環境をカスタマイズする革命的な機能を持つ。
無線システムにおけるRISの利点を完全に活用するには、反射素子の位相を従来の通信資源と共同で設計する必要がある。
本稿では、RISが課す制約を扱うための現在の最適化手法と人工知能に基づく手法についてレビューする。
論文 参考訳(メタデータ) (2022-04-28T09:26:14Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Constraints Satisfiability Driven Reinforcement Learning for Autonomous
Cyber Defense [7.321728608775741]
強化学習(RL)の防御政策の最適化と検証を目的とした新しいハイブリッド自律エージェントアーキテクチャを紹介します。
我々は、安全かつ効果的な行動に向けてRL決定を操るために、制約検証(SMT(Satisfiability modulo theory))を用いる。
シミュレーションCPS環境における提案手法の評価は,エージェントが最適方針を迅速に学習し,99%のケースで多種多様な攻撃戦略を破ることを示す。
論文 参考訳(メタデータ) (2021-04-19T01:08:30Z) - Non-stationary Online Learning with Memory and Non-stochastic Control [71.14503310914799]
我々は,過去の決定に依拠する損失関数を許容するメモリを用いたオンライン凸最適化(OCO)の問題について検討する。
本稿では,非定常環境に対してロバストなアルゴリズムを設計するための性能指標として,動的ポリシーの後悔を紹介する。
我々は,時間的地平線,非定常度,メモリ長といった面で,最適な動的ポリシーの後悔を確実に享受するメモリ付きOCOの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-07T09:45:15Z) - Automated Adversary Emulation for Cyber-Physical Systems via
Reinforcement Learning [4.763175424744536]
我々は,サイバー物理システムに対する敵エミュレーションに対するドメイン認識の自動化手法を開発した。
我々は、マルコフ決定プロセス(MDP)モデルを定式化し、ハイブリッドアタックグラフ上で最適なアタックシーケンスを決定する。
モデルベースおよびモデルフリー強化学習(RL)法を用いて,離散連続型MDPをトラクタブルな方法で解く。
論文 参考訳(メタデータ) (2020-11-09T18:44:29Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。