Adversarial Observations in Weather Forecasting
- URL: http://arxiv.org/abs/2504.15942v1
- Date: Tue, 22 Apr 2025 14:38:13 GMT
- Title: Adversarial Observations in Weather Forecasting
- Authors: Erik Imgrund, Thorsten Eisenhofer, Konrad Rieck,
- Abstract summary: We present a novel attack on autoregressive diffusion models, such as those used in Google's GenCast.<n>The attack introduces subtle perturbations into weather observations that are statistically indistinguishable from natural noise.<n>Our findings highlight a critical security risk with the potential to cause large-scale disruptions and undermine public trust in weather prediction.
- Score: 11.130455392128072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-based systems, such as Google's GenCast, have recently redefined the state of the art in weather forecasting, offering more accurate and timely predictions of both everyday weather and extreme events. While these systems are on the verge of replacing traditional meteorological methods, they also introduce new vulnerabilities into the forecasting process. In this paper, we investigate this threat and present a novel attack on autoregressive diffusion models, such as those used in GenCast, capable of manipulating weather forecasts and fabricating extreme events, including hurricanes, heat waves, and intense rainfall. The attack introduces subtle perturbations into weather observations that are statistically indistinguishable from natural noise and change less than 0.1% of the measurements - comparable to tampering with data from a single meteorological satellite. As modern forecasting integrates data from nearly a hundred satellites and many other sources operated by different countries, our findings highlight a critical security risk with the potential to cause large-scale disruptions and undermine public trust in weather prediction.
Related papers
- Improving Predictions of Convective Storm Wind Gusts through Statistical Post-Processing of Neural Weather Models [0.07710102716793873]
Recent advancements in Neural Weather Models (NWMs) offer a computationally inexpensive and fast approach for forecasting atmospheric environments on a 0.25deg global grid.
For thunderstorms, these environments can be empirically post-processed to predict wind gust distributions at specific locations.
With the Pangu-Weather NWM, we apply a hierarchy of statistical and deep learning post-processing methods to forecast hourly wind gusts up to three days ahead.
arXiv Detail & Related papers (2025-03-31T18:25:35Z) - FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - Skilful Precipitation Nowcasting Using NowcastNet [0.0]
Precipitation nowcasting can help relevant institutions to better prepare for such events as they impact agriculture, transport, public health and safety, etc.
We use recently proposed NowcastNet, a physics-conditioned deep generative network, to forecast precipitation for different regions of Europe using satellite images.
arXiv Detail & Related papers (2023-11-29T11:24:52Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
Uncertainty quantification is crucial to decision-making.
dominant approach to representing uncertainty in weather forecasting is to generate an ensemble of forecasts.
We propose to amortize the computational cost by emulating these forecasts with deep generative diffusion models learned from historical data.
arXiv Detail & Related papers (2023-06-24T22:00:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Short-term precipitation prediction using deep learning [5.1589108738893215]
We show that a 3D convolutional neural network using a single frame of meteorology fields is capable of predicting the precipitation spatial distribution.
The network is developed based on 39-years (1980-2018) data of meteorology and daily precipitation over the contiguous United States.
arXiv Detail & Related papers (2021-10-05T06:37:24Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z) - A review of radar-based nowcasting of precipitation and applicable
machine learning techniques [3.0581668008670673]
A 'nowcast' is a type of weather forecast which makes predictions in the very short term, typically less than two hours.
This type of weather prediction has important applications for commercial aviation; public and outdoor events; and the construction industry.
New advances are possible with new partnerships between the environmental science and machine learning communities.
arXiv Detail & Related papers (2020-05-11T10:34:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.