論文の概要: Zero-shot Conversational Summarization Evaluations with small Large
Language Models
- arxiv url: http://arxiv.org/abs/2311.18041v1
- Date: Wed, 29 Nov 2023 19:34:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 19:02:02.898042
- Title: Zero-shot Conversational Summarization Evaluations with small Large
Language Models
- Title(参考訳): 小型言語モデルを用いたゼロショット会話要約評価
- Authors: Ramesh Manuvinakurike, Saurav Sahay, Sangeeta Manepalli, Lama Nachman
- Abstract要約: 大きな言語モデル(LLM)は強力な要約能力を示す。
我々は,会話要約におけるLLMの評価を行い,その性能を様々なプロンプトで示す。
また、人間の評価によるモデルの評価を行い、会話要約におけるモデルの限界について議論する。
- 参考スコア(独自算出の注目度): 7.525771026977357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) exhibit powerful summarization abilities.
However, their capabilities on conversational summarization remains under
explored. In this work we evaluate LLMs (approx. 10 billion parameters) on
conversational summarization and showcase their performance on various prompts.
We show that the summaries generated by models depend on the instructions and
the performance of LLMs vary with different instructions sometimes resulting
steep drop in ROUGE scores if prompts are not selected carefully. We also
evaluate the models with human evaluations and discuss the limitations of the
models on conversational summarization
- Abstract(参考訳): 大きな言語モデル(LLM)は強力な要約能力を示す。
しかし、会話の要約におけるそれらの能力はまだ検討中である。
本研究では,会話要約におけるllm(約100億パラメータ)を評価し,様々なプロンプトでの性能を示す。
モデルが生成するサマリーは命令に依存し,LSMの性能は異なる命令によって異なり,プロンプトが慎重に選択されていない場合,ROUGEスコアが急降下することがある。
また,人間評価によるモデルの評価を行い,会話要約におけるモデルの限界について考察する。
関連論文リスト
- VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - Information-Theoretic Distillation for Reference-less Summarization [67.51150817011617]
本稿では,要約のための情報理論的目的に基づいて,強力な要約器を蒸留する新しい枠組みを提案する。
我々は,教師モデルとしてPythia-2.8Bから出発する。
我々は,ChatGPTと競合する5億8800万のパラメータしか持たないコンパクトだが強力な要約器に到達した。
論文 参考訳(メタデータ) (2024-03-20T17:42:08Z) - SemScore: Automated Evaluation of Instruction-Tuned LLMs based on
Semantic Textual Similarity [3.3162484539136416]
本稿では,SemScoreと呼ばれる簡易な評価尺度を提案する。
意味的テキスト類似度(STS)を用いたモデル出力とゴールドターゲット応答の比較
提案したSemScore測定基準は,人間の評価と相関する点において,より複雑な評価指標よりも優れていることが判明した。
論文 参考訳(メタデータ) (2024-01-30T14:52:50Z) - Exploring Prompting Large Language Models as Explainable Metrics [0.0]
本稿では,Large Language Models (LLMs) を用いた要約タスクの説明可能な評価のためのゼロショットプロンプトベースの戦略を提案する。
自然言語処理(NLP)における評価指標としてのLCMの有望な可能性を示す実験を行った。
得られた最良プロンプトの性能は、テストデータ上のテキスト要約タスクにおける人間の評価と、0.477のKendall相関を達成した。
論文 参考訳(メタデータ) (2023-11-20T06:06:22Z) - Exploring the Factual Consistency in Dialogue Comprehension of Large Language Models [51.75805497456226]
本研究は,対話要約タスクの助けを借りて,事実整合性の問題に焦点を当てる。
評価の結果,LLMが生成する要約の26.8%が事実整合性を含んでいることがわかった。
LLMの対話理解能力を高めるために,自動構築マルチタスクデータを用いた微調整パラダイムを提案する。
論文 参考訳(メタデータ) (2023-11-13T09:32:12Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - Revisiting Large Language Models as Zero-shot Relation Extractors [8.953462875381888]
リレーショナル抽出(RE)は、ゼロショット設定下であっても、一定のラベル付きまたはラベルなしのデータを一貫して含む。
近年の研究では、大きな言語モデル(LLM)が、単に自然言語のプロンプトを与えられただけで、新しいタスクにうまく移行していることが示されている。
本研究はゼロショット関係抽出器としてLLMを探索することに焦点を当てる。
論文 参考訳(メタデータ) (2023-10-08T06:17:39Z) - Summarization is (Almost) Dead [49.360752383801305]
我々は,大規模言語モデル(LLM)のゼロショット生成能力を評価するため,新しいデータセットを開発し,人間による評価実験を行う。
本研究は, 微調整モデルにより生成した要約や要約よりも, LLM生成要約に対する人間の評価において, 明らかな優位性を示した。
論文 参考訳(メタデータ) (2023-09-18T08:13:01Z) - Benchmarking Large Language Models for News Summarization [79.37850439866938]
大規模言語モデル(LLM)は自動要約を約束しているが、その成功の背景にある理由はよく分かっていない。
LLMのゼロショット要約能力の鍵は、モデルサイズではなく、命令チューニングにある。
論文 参考訳(メタデータ) (2023-01-31T18:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。