論文の概要: SemScore: Automated Evaluation of Instruction-Tuned LLMs based on
Semantic Textual Similarity
- arxiv url: http://arxiv.org/abs/2401.17072v2
- Date: Mon, 5 Feb 2024 10:53:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 02:29:24.472098
- Title: SemScore: Automated Evaluation of Instruction-Tuned LLMs based on
Semantic Textual Similarity
- Title(参考訳): SemScore:意味的テクスチャ類似性に基づく指導型LLMの自動評価
- Authors: Ansar Aynetdinov, Alan Akbik
- Abstract要約: 本稿では,SemScoreと呼ばれる簡易な評価尺度を提案する。
意味的テキスト類似度(STS)を用いたモデル出力とゴールドターゲット応答の比較
提案したSemScore測定基準は,人間の評価と相関する点において,より複雑な評価指標よりも優れていることが判明した。
- 参考スコア(独自算出の注目度): 3.3162484539136416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction-tuned Large Language Models (LLMs) have recently showcased
remarkable advancements in their ability to generate fitting responses to
natural language instructions. However, many current works rely on manual
evaluation to judge the quality of generated responses. Since such manual
evaluation is time-consuming, it does not easily scale to the evaluation of
multiple models and model variants. In this short paper, we propose a
straightforward but remarkably effective evaluation metric called SemScore, in
which we directly compare model outputs to gold target responses using semantic
textual similarity (STS). We conduct a comparative evaluation of the model
outputs of 12 prominent instruction-tuned LLMs using 8 widely-used evaluation
metrics for text generation. We find that our proposed SemScore metric
outperforms all other, in many cases more complex, evaluation metrics in terms
of correlation to human evaluation. These findings indicate the utility of our
proposed metric for the evaluation of instruction-tuned LLMs.
- Abstract(参考訳): 命令調整型大規模言語モデル(llms)は、最近、自然言語命令に適合した応答を生成する能力の顕著な進歩を見せている。
しかし、現在の多くの研究は、生成された応答の品質を判断するために手作業による評価に依存している。
このような手作業による評価は時間を要するため、複数のモデルやモデル変種の評価に容易にスケールできない。
本稿では,セムスコア(SemScore)という,モデル出力とゴールドターゲット応答を直接意味的テキスト類似度(STS)を用いて比較する手法を提案する。
テキスト生成のための8種類の評価指標を用いて12個の著名な命令調整llmのモデル出力の比較評価を行った。
提案したSemScore測定基準は,人間の評価と相関関係において,より複雑な評価指標よりも優れていることがわかった。
これらの結果から,提案手法の有効性が示唆された。
関連論文リスト
- A Comparative Study of Quality Evaluation Methods for Text Summarization [0.5512295869673147]
本稿では,大規模言語モデル(LLM)に基づくテキスト要約評価手法を提案する。
以上の結果から,LLMの評価は人間の評価と密接に一致しているが,ROUGE-2,BERTScore,SummaCなどの広く使用されている自動測定値には一貫性がない。
論文 参考訳(メタデータ) (2024-06-30T16:12:37Z) - Evaluation of Instruction-Following Ability for Large Language Models on Story-Ending Generation [2.4889060833127665]
本稿では,大規模言語モデル(LLM)の物語生成の文脈における指示追従能力の評価に焦点をあてる。
本稿では,機械読影理解モデル(MRC)を用いた自動評価パイプラインを提案する。
論文 参考訳(メタデータ) (2024-06-24T06:53:36Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEvalは、評価のためにLarge Language Models(LLM)表現の投影を利用するメトリクスである。
我々の研究は、LLM表現に埋め込まれたテキスト品質に関する情報の豊かさを強調し、新しいメトリクスの開発のための洞察を提供する。
論文 参考訳(メタデータ) (2024-04-30T13:50:55Z) - LLMs as Narcissistic Evaluators: When Ego Inflates Evaluation Scores [23.568883428947494]
本研究は,LMに基づく評価指標が,要約タスクの文脈において,それぞれの基盤となるLMに対して有利なバイアスを示すかどうかを考察する。
以上の結果から, 金のサマリーを活用せずに, 基準のない手法で評価指標を用いた場合, 特に有意なバイアスがみられた。
これらの結果は、生成的評価モデルによって提供される評価は、本質的なテキスト品質を超える要因に影響される可能性があることを裏付けている。
論文 参考訳(メタデータ) (2023-11-16T10:43:26Z) - Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization [132.25202059478065]
命令制御可能なテキスト要約の大規模言語モデル(LLM)をベンチマークする。
本研究は,LLMにおいて,命令制御可能なテキスト要約が依然として困難な課題であることを示す。
論文 参考訳(メタデータ) (2023-11-15T18:25:26Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - BLESS: Benchmarking Large Language Models on Sentence Simplification [55.461555829492866]
我々は、テキスト単純化(TS)タスク上で、最新の最先端の大規模言語モデル(LLM)のパフォーマンスベンチマークであるBLESSを紹介する。
異なるドメイン(Wikipedia、ニュース、医療)の3つのテストセットに対して、サイズ、アーキテクチャ、事前学習方法、アクセシビリティの異なる44のモデルを評価する。
評価の結果,最高のLSMはTSのトレーニングを受けていないにもかかわらず,最先端のTSベースラインと相容れない性能を示した。
論文 参考訳(メタデータ) (2023-10-24T12:18:17Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - EvalLM: Interactive Evaluation of Large Language Model Prompts on
User-Defined Criteria [43.944632774725484]
本稿では,ユーザ定義基準に基づいて複数の出力を評価することで,プロンプトを反復的に精錬するインタラクティブシステムであるEvalLMを提案する。
自然言語の基準を記述することで、ユーザはシステムのLCMベースの評価器を使って、どのプロンプトがエキサイティングか、失敗かを概観することができる。
比較研究では、EvalLMは手動による評価と比較して、参加者がより多様な基準を策定し、アウトプットの2倍を検査し、59%のリビジョンで満足なプロンプトに達するのに役立った。
論文 参考訳(メタデータ) (2023-09-24T13:19:38Z) - Benchmarking Large Language Models for News Summarization [79.37850439866938]
大規模言語モデル(LLM)は自動要約を約束しているが、その成功の背景にある理由はよく分かっていない。
LLMのゼロショット要約能力の鍵は、モデルサイズではなく、命令チューニングにある。
論文 参考訳(メタデータ) (2023-01-31T18:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。