論文の概要: Composition of Nondeterministic and Stochastic Services for LTLf Task
Specifications
- arxiv url: http://arxiv.org/abs/2311.18114v1
- Date: Wed, 29 Nov 2023 21:58:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 18:39:34.279843
- Title: Composition of Nondeterministic and Stochastic Services for LTLf Task
Specifications
- Title(参考訳): LTLfタスク仕様のための非決定的・確率的サービスの構成
- Authors: Giuseppe De Giacomo, Marco Favorito, Luciana Silo
- Abstract要約: 我々は、サービスが非決定論的であり、Logicf仕様が正確に満たされる場合の問題を調査する。
このフレームワークには、Smart ManufacturingやDigital Twinsなど、いくつかの興味深いアプリケーションがある。
- 参考スコア(独自算出の注目度): 27.79897410540943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we study the composition of services so as to obtain runs
satisfying a task specification in Linear Temporal Logic on finite traces
(LTLf). We study the problem in the case services are nondeterministic and the
LTLf specification can be exactly met, and in the case services are stochastic,
where we are interested in maximizing the probability of satisfaction of the
LTLf specification and, simultaneously, minimizing the utilization cost of the
services. To do so, we combine techniques from LTLf synthesis, service
composition \`a la Roman Model, reactive synthesis, and bi-objective
lexicographic optimization on MDPs. This framework has several interesting
applications, including Smart Manufacturing and Digital Twins.
- Abstract(参考訳): 本稿では,有限トレース(LTLf)上での線形時間論理におけるタスク仕様を満たす動作を得るためのサービスの構成について検討する。
我々は、サービスが非決定論的で、ltlf仕様を正確に満たすことができる場合と、ltlf仕様の満足度を最大化し、同時にサービスの利用コストを最小化することに関心がある場合の問題を考察する。
そのために, LTLf合成, サービス構成 \`a la Roman Model, 反応性合成, およびMDP上での双方向レキソグラフィー最適化の手法を組み合わせる。
このフレームワークには、Smart ManufacturingやDigital Twinsなど、いくつかの興味深いアプリケーションがある。
関連論文リスト
- Benchmarking Agentic Workflow Generation [80.74757493266057]
複数面シナリオと複雑なグラフワークフロー構造を備えた統合ワークフロー生成ベンチマークであるWorFBenchを紹介する。
また,サブシーケンスとサブグラフマッチングアルゴリズムを利用したシステム評価プロトコルWorFEvalを提案する。
我々は、生成されたタスクが下流のタスクを強化し、推論中により少ない時間で優れたパフォーマンスを達成することができることを観察する。
論文 参考訳(メタデータ) (2024-10-10T12:41:19Z) - DeepLTL: Learning to Efficiently Satisfy Complex LTL Specifications [59.01527054553122]
リニア時間論理(LTL)は、強化学習(RL)における複雑で時間的に拡張されたタスクを特定する強力なフォーマリズムとして最近採用されている。
既存のアプローチはいくつかの欠点に悩まされており、それらは有限水平フラグメントにのみ適用でき、最適以下の解に制限され、安全制約を適切に扱えない。
本研究では,これらの問題に対処するための新しい学習手法を提案する。
提案手法は, 自動仕様のセマンティクスを明示的に表現したB"uchiaの構造を利用して, 所望の式を満たすための真理代入の順序を条件としたポリシーを学習する。
論文 参考訳(メタデータ) (2024-10-06T21:30:38Z) - On-the-fly Synthesis for LTL over Finite Traces: An Efficient Approach that Counts [20.14001970300658]
トップダウン決定論的オートマトン構築に基づく有限トレース(LTLf)上での線形時間論理のオンザフライフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-14T06:52:58Z) - Giving each task what it needs -- leveraging structured sparsity for tailored multi-task learning [4.462334751640166]
マルチタスク学習(MTL)フレームワークでは、各タスクは、低レベルから高レベルの属性まで、異なる特徴表現を要求する。
この研究は、構造化された空間を利用して個々のタスクの特徴選択を洗練し、マルチタスクシナリオにおける全てのタスクのパフォーマンスを向上させるレイヤdマルチタスクモデルを導入する。
論文 参考訳(メタデータ) (2024-06-05T08:23:38Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - Low-Rank Multitask Learning based on Tensorized SVMs and LSSVMs [65.42104819071444]
マルチタスク学習(MTL)はタスク関連性を活用して性能を向上させる。
タスクインデックスに対応する各モードを持つ高次テンソルを用いて、複数のインデックスが参照するタスクを自然に表現する。
テンソル化サポートベクターマシン(SVM)と最小2乗サポートベクターマシン(LSSVM)を併用した低ランクMTL手法の汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T14:28:26Z) - Policy Optimization with Linear Temporal Logic Constraints [37.27882290236194]
本稿では,線形時間論理制約を用いた政策最適化の問題点について考察する。
我々は,タスク満足度とコスト最適性の両方を保証するために,サンプル複雑性分析を楽しむモデルベースアプローチを開発した。
論文 参考訳(メタデータ) (2022-06-20T02:58:02Z) - Semantic Probabilistic Layers for Neuro-Symbolic Learning [83.25785999205932]
我々は構造化出力予測(SOP)のための予測層を設計する。
予測が事前に定義されたシンボリック制約のセットと一致していることを保証するため、任意のニューラルネットワークにプラグインすることができる。
我々のセマンティック確率層(SPL)は、構造化された出力空間上で複雑な相関や制約をモデル化することができる。
論文 参考訳(メタデータ) (2022-06-01T12:02:38Z) - Computing unsatisfiable cores for LTLf specifications [3.251765107970636]
有限トレース上の線形時間時間時間論理(LTLf)は、多くのアプリケーション領域で仕様を作成するためのデファクト標準になりつつある。
満足度チェックのための最先端手法を用いて、不満足なコアを抽出する4つのアルゴリズムを提案する。
結果は、異なるアルゴリズムやツールの実現可能性、有効性、相補性を示している。
論文 参考訳(メタデータ) (2022-03-09T16:08:43Z) - LTLf Synthesis on Probabilistic Systems [0.0]
合成は、この行動を達成する確率を最大化するポリシーを見つけるために用いられる。
有限トレース特性を与えられた振る舞いに対するポリシー合成を解くための道具は存在しない。
本稿では,マルコフプロセスの削減による2つの問題を解決するアルゴリズムと,オートマトンフのための2番目のネイティブツールを提案する。
論文 参考訳(メタデータ) (2020-09-23T01:26:47Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。