論文の概要: DKiS: Decay weight invertible image steganography with private key
- arxiv url: http://arxiv.org/abs/2311.18243v2
- Date: Thu, 18 Jan 2024 07:47:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-19 19:33:00.455387
- Title: DKiS: Decay weight invertible image steganography with private key
- Title(参考訳): DKiS:秘密鍵を用いた非可逆画像ステガノグラフィ
- Authors: Hang Yang, Yitian Xu, Xuhua Liu
- Abstract要約: 新規な秘密鍵を用いた画像ステガノグラフィ技術が導入された。
ステガノグラフィー法の公開知識にかかわらず、アクセスには対応する秘密鍵が必要である。
非可逆的画像ステガノグラフィープロセスにおける重要な課題が特定されている。
- 参考スコア(独自算出の注目度): 11.41125892113752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image steganography, defined as the practice of concealing information within
another image, traditionally encounters security challenges when its methods
become publicly known or are under attack. To address this, a novel private
key-based image steganography technique has been introduced. This approach
ensures the security of the hidden information, as access requires a
corresponding private key, regardless of the public knowledge of the
steganography method. Experimental evidence has been presented, demonstrating
the effectiveness of our method and showcasing its real-world applicability.
Furthermore, a critical challenge in the invertible image steganography process
has been identified by us: the transfer of non-essential, or `garbage',
information from the secret to the host pipeline. To tackle this issue, the
decay weight has been introduced to control the information transfer,
effectively filtering out irrelevant data and enhancing the performance of
image steganography. The code for this technique is publicly accessible at
https://github.com/yanghangAI/DKiS, and a practical demonstration can be found
at http://yanghang.site/hidekey.
- Abstract(参考訳): 画像ステガノグラフィは、他の画像の中に情報を隠蔽する行為として定義されており、伝統的にその手法が公に知られるか攻撃されている場合にセキュリティ上の課題に遭遇する。
これを解決するために、新しい秘密鍵ベース画像ステガノグラフィー技術が導入された。
このアプローチは、ステガノグラフィー手法の公開知識に関係なく、アクセスに対応する秘密鍵を必要とするため、隠れた情報のセキュリティを保証する。
提案手法の有効性を実証し,実世界の適用性を示す実験的な証拠が提示されている。
さらに,インバータブル画像ステガノグラフィ法における批判的課題として,シークレットからホストパイプラインへの非必須情報,すなわち「ガーベージ」の転送が挙げられている。
この問題に対処するために,情報伝達の制御,無関係なデータを効果的にフィルタリングし,画像ステガノグラフィの性能を向上させるために,減衰重みが導入されている。
このテクニックのコードはhttps://github.com/yanghangAI/DKiSで公開されている。
関連論文リスト
- DiffStega: Towards Universal Training-Free Coverless Image Steganography with Diffusion Models [38.17146643777956]
カバーレス画像ステガノグラフィ(CIS)は、カバー画像を使用しないことにより、非受容性を高める。
近年の研究では、拡散モデルによるCISの鍵としてテキストプロンプトが活用されている。
そこで我々は,DiffStegaを提案する。DiffStegaは,ユニバーサルアプリケーションのための革新的なトレーニングフリー拡散型CIS戦略である。
論文 参考訳(メタデータ) (2024-07-15T06:15:49Z) - Robust Message Embedding via Attention Flow-Based Steganography [34.35209322360329]
画像ステガノグラフィーは、ホスト画像に情報を隠蔽し、元のものと知覚的に区別できないステゴ画像を得る。
本稿では,ホスト画像中のQRコードを介してメッセージを隠蔽する機能を持つ,Robust Message Steganography (RMSteg) と呼ばれる新しいメッセージ埋め込みフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-26T03:16:40Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
この脆弱性を解決するために,ハードウェアレベルの顔識別手法を提案する。
また、プライバシ保存画像、フェイスヒートマップ、およびパブリックデータセットからの参照顔イメージを入力として、新しい顔を生成する匿名化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-31T19:28:04Z) - PRIS: Practical robust invertible network for image steganography [10.153270845070676]
画像ステガノグラフィー(英: Image steganography)は、人間の目では見えないように、他の画像の中に秘密情報を隠す技術である。
既存の画像ステガノグラフィ法のほとんどは、歪みに影響を受ける容器像の隠れ堅牢性が低い。
本稿では,可逆ニューラルネットワークに基づく画像ステガノグラフィーの堅牢性向上を目的としたPRISを提案する。
論文 参考訳(メタデータ) (2023-09-24T12:29:13Z) - Free-ATM: Exploring Unsupervised Learning on Diffusion-Generated Images
with Free Attention Masks [64.67735676127208]
テキストと画像の拡散モデルは、画像認識の恩恵を受ける大きな可能性を示している。
有望ではあるが、拡散生成画像の教師なし学習に特化した調査は不十分である。
上記フリーアテンションマスクをフル活用することで、カスタマイズされたソリューションを導入する。
論文 参考訳(メタデータ) (2023-08-13T10:07:46Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
本稿では,事前学習したGANの潜時空間における画像の潜時表現を直接最適化するタスク非依存匿名化手法を提案する。
我々は一連の実験を通して、我々の手法が画像の同一性を匿名化できる一方で、顔の属性をより保存できることを実証した。
論文 参考訳(メタデータ) (2023-03-20T17:34:05Z) - ConfounderGAN: Protecting Image Data Privacy with Causal Confounder [85.6757153033139]
本稿では,GAN(Generative Adversarial Network)のConfounderGANを提案する。
実験は、3つの自然なオブジェクトデータセットと3つの医療データセットからなる6つの画像分類データセットで実施される。
論文 参考訳(メタデータ) (2022-12-04T08:49:14Z) - Image Steganography based on Style Transfer [12.756859984638961]
スタイル転送に基づく画像ステガノグラフィーネットワークを提案する。
コンテンツイメージスタイルを変換しながら、秘密情報を埋め込みます。
潜時空間では、秘密情報をカバー画像の潜時表現に統合してステゴ画像を生成する。
論文 参考訳(メタデータ) (2022-03-09T02:58:29Z) - Robust Face-Swap Detection Based on 3D Facial Shape Information [59.32489266682952]
顔のスワップ画像やビデオは、悪意ある攻撃者を惹きつけ、重要な人物の信用を損ねている。
以前のピクセルレベルのアーティファクトに基づく検出技術は、常に不明瞭なパターンにフォーカスするが、利用可能なセマンティックなヒントは無視する。
キーフィギュアの顔・スワップ検出のための外観・形状特徴をフル活用するための生体情報に基づく手法を提案する。
論文 参考訳(メタデータ) (2021-04-28T09:35:48Z) - A Novel Local Binary Pattern Based Blind Feature Image Steganography [12.970738540611855]
ブラインド画像ステガノグラフィを用いた新しい特徴量解析手法を提案する。この手法はカバーのlpp(local binary pattern)特徴を同等の埋め込み率で保存するものである。
提案手法は,秘密画像のビットを隠れるために局所バイナリパターンを計算し,そのビットをカバーに存在する局所関係をステゴ画像に保存する。
論文 参考訳(メタデータ) (2021-01-16T06:37:00Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。