論文の概要: Categorical Traffic Transformer: Interpretable and Diverse Behavior
Prediction with Tokenized Latent
- arxiv url: http://arxiv.org/abs/2311.18307v1
- Date: Thu, 30 Nov 2023 07:25:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 17:27:17.306851
- Title: Categorical Traffic Transformer: Interpretable and Diverse Behavior
Prediction with Tokenized Latent
- Title(参考訳): カテゴリー的交通変圧器:Tokenized Latentを用いた解釈・横動作予測
- Authors: Yuxiao Chen, Sander Tonkens, and Marco Pavone
- Abstract要約: 本稿では、連続的な軌道予測とトークン化されたカテゴリー予測の両方を出力する交通モデルであるカテゴリー交通変換器(CTT)を提案する。
CTTの最も顕著な特徴は、完全に解釈可能な潜伏空間であり、基底真理から潜伏変数を直接監督することができる。
その結果、CTTは、予測精度でSOTAを叩きながら意味のある異なる潜伏モードで条件付けられた多様な振る舞いを生成できる。
- 参考スコア(独自算出の注目度): 17.14501241048221
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adept traffic models are critical to both planning and closed-loop simulation
for autonomous vehicles (AV), and key design objectives include accuracy,
diverse multimodal behaviors, interpretability, and downstream compatibility.
Recently, with the advent of large language models (LLMs), an additional
desirable feature for traffic models is LLM compatibility. We present
Categorical Traffic Transformer (CTT), a traffic model that outputs both
continuous trajectory predictions and tokenized categorical predictions (lane
modes, homotopies, etc.). The most outstanding feature of CTT is its fully
interpretable latent space, which enables direct supervision of the latent
variable from the ground truth during training and avoids mode collapse
completely. As a result, CTT can generate diverse behaviors conditioned on
different latent modes with semantic meanings while beating SOTA on prediction
accuracy. In addition, CTT's ability to input and output tokens enables
integration with LLMs for common-sense reasoning and zero-shot generalization.
- Abstract(参考訳): 適応交通モデルは、自動運転車(AV)の計画と閉ループシミュレーションの両方に重要であり、設計目的には精度、多様なマルチモーダルな振る舞い、解釈可能性、下流互換性などが含まれる。
近年,大規模言語モデル (LLM) の出現に伴い,交通モデルに望ましい機能として LLM との互換性がある。
本稿では、連続軌跡予測とトークン化されたカテゴリー予測(レーンモード、ホモトピーなど)の両方を出力する交通モデルであるCategorical Traffic Transformer(CTT)を提案する。
CTTの最も優れた特徴は、完全に解釈可能な潜伏空間であり、トレーニング中に地上の真理から潜伏変数を直接監視し、モード崩壊を完全に回避することができる。
その結果、CTTは、予測精度でSOTAを叩きながら意味のある異なる潜伏モードで条件付けられた多様な振る舞いを生成できる。
さらに、CTTのトークンの入力および出力能力は、共通センス推論とゼロショット一般化のためのLLMとの統合を可能にする。
関連論文リスト
- Sparse Prototype Network for Explainable Pedestrian Behavior Prediction [60.80524827122901]
Sparse Prototype Network (SPN) は,歩行者の将来の行動,軌道,ポーズを同時に予測するための説明可能な手法である。
モノセマンティリティとクラスタリングの制約によって規則化されたプロトタイプは、一貫性と人間の理解可能な機能を学ぶ。
論文 参考訳(メタデータ) (2024-10-16T03:33:40Z) - MSTF: Multiscale Transformer for Incomplete Trajectory Prediction [30.152217860860464]
本稿では,不完全な軌道予測のためのエンドツーエンドフレームワークであるMultiscale Transformer(MSTF)を提案する。
MSTFは、Multiscale Attention Head (MAH)とInformation Increment-based Pattern Adaptive (IIPA)モジュールを統合している。
2つの大規模実世界のデータセットを用いて提案したMSTFモデルを評価する。
論文 参考訳(メタデータ) (2024-07-08T07:10:17Z) - Towards Explainable Traffic Flow Prediction with Large Language Models [36.86937188565623]
本稿では,Large Language Models (LLMs) に基づく交通流予測モデルを提案する。
マルチモーダルなトラフィックデータを自然言語記述に転送することで、xTP-LLMは複雑な時系列パターンと外部要因を包括的なトラフィックデータからキャプチャする。
経験的に、xTP-LLMは、ディープラーニングのベースラインと比較して、競争の正確さを示すと同時に、予測の直感的で信頼性の高い説明を提供する。
論文 参考訳(メタデータ) (2024-04-03T07:14:15Z) - LC-LLM: Explainable Lane-Change Intention and Trajectory Predictions with Large Language Models [8.624969693477448]
既存の動き予測手法は、特に長期予測精度と解釈可能性の観点から、改善の余地が十分にある。
本稿では,大規模言語モデルの強い推論能力と自己説明能力を活用する,説明可能なレーン変更予測モデルLC-LLMを提案する。
論文 参考訳(メタデータ) (2024-03-27T08:34:55Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
本稿では,GPT方式の次のトークン動作予測を動作予測に導入する。
同種単位-ワードからなる言語データとは異なり、運転シーンの要素は複雑な空間的・時間的・意味的な関係を持つ可能性がある。
そこで本稿では,情報集約と位置符号化スタイルの異なる3つの因子化アテンションモジュールを用いて,それらの関係を捉えることを提案する。
論文 参考訳(メタデータ) (2024-03-20T06:22:37Z) - Controllable Diverse Sampling for Diffusion Based Motion Behavior
Forecasting [11.106812447960186]
制御可能拡散軌道(CDT)と呼ばれる新しい軌道生成器を導入する。
CDTは、情報と社会的相互作用をトランスフォーマーに基づく条件記述拡散モデルに統合し、将来の軌跡の予測を導く。
マルチモーダル性を確保するため,直進,右折,左折などの軌道モードを指示する行動トークンを組み込んだ。
論文 参考訳(メタデータ) (2024-02-06T13:16:54Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Guided Conditional Diffusion for Controllable Traffic Simulation [42.198185904248994]
制御可能で現実的な交通シミュレーションは、自動運転車の開発と検証に不可欠である。
データ駆動アプローチは現実的で人間的な振る舞いを生成し、シミュレートされたトラフィックから現実のトラフィックへの移行を改善する。
本研究では,制御可能なトラヒック生成(CTG)のための条件拡散モデルを構築し,テスト時に所望のトラジェクトリ特性を制御できるようにする。
論文 参考訳(メタデータ) (2022-10-31T14:44:59Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
本研究では,制御に対する予測の下流効果を評価するための制御認識予測目標(CAPOs)を提案する。
本稿では,エージェント間の注意モデルを用いた重み付けと,予測軌跡を接地真実軌跡に交換する際の制御変動に基づく重み付けの2つの方法を提案する。
論文 参考訳(メタデータ) (2022-04-28T07:37:21Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。