論文の概要: Lessons from Building CodeBuddy: A Contextualized AI Coding Assistant
- arxiv url: http://arxiv.org/abs/2311.18450v2
- Date: Tue, 2 Jan 2024 13:50:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 19:41:57.036866
- Title: Lessons from Building CodeBuddy: A Contextualized AI Coding Assistant
- Title(参考訳): CodeBuddyの構築から学んだこと - コンテキスト化されたAIコーディングアシスタント
- Authors: Gustavo Pinto and Cleidson de Souza and Jo\~ao Batista Neto and
Alberto de Souza and Tarc\'isio Gotto and Edward Monteiro
- Abstract要約: 大規模言語モデル上に構築された新しいタイプのツールが登場しつつある。
これらのツールは、微調整やコンテキスト情報によるユーザプロンプトの強化といった手法を用いて、欠点を軽減することを目的としている。
- 参考スコア(独自算出の注目度): 2.268415020650315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With their exceptional natural language processing capabilities, tools based
on Large Language Models (LLMs) like ChatGPT and Co-Pilot have swiftly become
indispensable resources in the software developer's toolkit. While recent
studies suggest the potential productivity gains these tools can unlock, users
still encounter drawbacks, such as generic or incorrect answers. Additionally,
the pursuit of improved responses often leads to extensive prompt engineering
efforts, diverting valuable time from writing code that delivers actual value.
To address these challenges, a new breed of tools, built atop LLMs, is
emerging. These tools aim to mitigate drawbacks by employing techniques like
fine-tuning or enriching user prompts with contextualized information.
In this paper, we delve into the lessons learned by a software development
team venturing into the creation of such a contextualized LLM-based
application, using retrieval-based techniques, called CodeBuddy. Over a
four-month period, the team, despite lacking prior professional experience in
LLM-based applications, built the product from scratch. Following the initial
product release, we engaged with the development team responsible for the code
generative components. Through interviews and analysis of the application's
issue tracker, we uncover various intriguing challenges that teams working on
LLM-based applications might encounter. For instance, we found three main group
of lessons: LLM-based lessons, User-based lessons, and Technical lessons. By
understanding these lessons, software development teams could become better
prepared to build LLM-based applications.
- Abstract(参考訳): 例外的な自然言語処理機能によって、ChatGPTやCo-PilotのようなLarge Language Models(LLM)ベースのツールは、ソフトウェア開発者のツールキットにおいて、急速に必須のリソースになっています。
最近の研究は、これらのツールがアンロックされる可能性のある生産性の向上を示唆している。
さらに、改善されたレスポンスの追求は、しばしば、実際の価値を提供するコードを書くことから価値ある時間を逸脱し、広範な迅速なエンジニアリング努力に繋がる。
これらの課題に対処するため、LSM上に構築された新しい種類のツールが登場しつつある。
これらのツールは、微調整やコンテキスト情報によるユーザプロンプトの強化といった手法を用いて、欠点を軽減することを目的としている。
本稿では,CodeBuddy と呼ばれる検索技術を用いて,ソフトウェア開発チームが,このような文脈化された LLM ベースのアプリケーションの開発について学んだ教訓を掘り下げる。
LLMベースのアプリケーションで以前のプロフェッショナルな経験がなかったにも関わらず、チームは4ヶ月間にわたって、ゼロから製品を構築した。
最初の製品リリースの後、私たちはコード生成コンポーネントを担当する開発チームと関わりました。
アプリケーションのイシュートラッカに関するインタビューと分析を通じて、llmベースのアプリケーションに取り組んでいるチームが直面するさまざまな興味深い課題を明らかにする。
例えば、LLMベースのレッスン、ユーザベースのレッスン、技術的レッスンの3つの主要なグループを見つけました。
これらの教訓を理解することで、ソフトウェア開発チームはLCMベースのアプリケーションを構築する準備がより良くなるだろう。
関連論文リスト
- LLMs: A Game-Changer for Software Engineers? [0.0]
GPT-3やGPT-4のような大規模言語モデル(LLM)は、従来のAIアプリケーションを超えた機能を備えた画期的なイノベーションとして登場した。
ソフトウェア開発に革命をもたらす潜在能力は、ソフトウェアエンジニアリング(SE)コミュニティを魅了している。
この記事では、LCMはソフトウェアの開発方法を変えるだけでなく、開発者の役割を再定義するものである、と論じる。
論文 参考訳(メタデータ) (2024-11-01T17:14:37Z) - Codellm-Devkit: A Framework for Contextualizing Code LLMs with Program Analysis Insights [9.414198519543564]
codellm-devkit (以下, CLDK') は,プログラム解析のプロセスを大幅に単純化したオープンソースライブラリである。
CLDKは開発者に対して直感的でユーザフレンドリなインターフェースを提供しています。
論文 参考訳(メタデータ) (2024-10-16T20:05:59Z) - Learning to Ask: When LLMs Meet Unclear Instruction [49.256630152684764]
大きな言語モデル(LLM)は、言語スキルだけでは達成不可能なタスクに対処するための外部ツールを活用することができる。
我々は、不完全な命令下でのLLMツールの使用性能を評価し、エラーパターンを分析し、Noisy ToolBenchと呼ばれる挑戦的なツール使用ベンチマークを構築した。
Ask-when-Needed (AwN) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-31T23:06:12Z) - An Empirical Study on Usage and Perceptions of LLMs in a Software
Engineering Project [1.433758865948252]
大規模言語モデル(LLM)は人工知能の飛躍であり、人間の言語を用いたタスクに優れる。
本稿では、AI生成したコードを分析し、コード生成に使用するプロンプトと人間の介入レベルを分析し、コードをコードベースに統合する。
ソフトウェア開発の初期段階において,LSMが重要な役割を担っていることが示唆された。
論文 参考訳(メタデータ) (2024-01-29T14:32:32Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
大規模言語モデル(LLM)のためのツール作成・検索フレームワークであるCRAFTを提案する。
タスク用に特別にキュレートされたツールセットを作成し、複雑なタスクを解決する能力を高めるためにこれらのセットからツールを取得するコンポーネントをLLMに装備する。
本手法はフレキシブルに設計されており,既製のLCMを細かな調整なしに未確認領域やモダリティに適応するためのプラグアンドプレイ方式を提供する。
論文 参考訳(メタデータ) (2023-09-29T17:40:26Z) - Software Testing with Large Language Models: Survey, Landscape, and
Vision [32.34617250991638]
事前訓練された大規模言語モデル(LLM)は、自然言語処理と人工知能におけるブレークスルー技術として登場した。
本稿では,ソフトウェアテストにおけるLCMの利用状況について概説する。
論文 参考訳(メタデータ) (2023-07-14T08:26:12Z) - Calculating Originality of LLM Assisted Source Code [0.0]
本稿では,学生がソースコードを書く際の本来の取り組み(およびLLMの貢献)を決定するニューラルネットワークベースのツールを提案する。
我々のツールは、コルモゴロフ複雑性のような最小記述長測度によって動機付けられている。
論文 参考訳(メタデータ) (2023-07-10T11:30:46Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
大規模言語モデル(LLM)はツールの利用において大きな進歩を遂げているが、その能力はAPIの可用性によって制限されている。
我々は、LCMがドキュメンテーションとコード実現を使って独自のツールを作成できる新しいフレームワークCREATORを提案する。
我々は,MATH と TabMWP のベンチマークで CREATOR を評価する。
論文 参考訳(メタデータ) (2023-05-23T17:51:52Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
より制御可能で安定した応答を実現するために、6種類のシンプルなローコードビジュアルプログラミングインタラクションを組み込んでいる。
ユーザフレンドリなインタラクション,制御可能な生成,広い適用性という,低コード LLM の3つの利点を強調した。
論文 参考訳(メタデータ) (2023-04-17T09:27:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。