Anatomy and Physiology of Artificial Intelligence in PET Imaging
- URL: http://arxiv.org/abs/2311.18614v1
- Date: Thu, 30 Nov 2023 15:12:57 GMT
- Title: Anatomy and Physiology of Artificial Intelligence in PET Imaging
- Authors: Tyler J. Bradshaw and Alan B. McMillan
- Abstract summary: This article provides an illustrated guide to the core principles of modern AI, with specific focus on aspects that are most likely to be encountered in PET imaging.
We describe convolutional neural networks, algorithm training, and explain the components of the commonly used U-Net for segmentation and image synthesis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The influence of artificial intelligence (AI) within the field of nuclear
medicine has been rapidly growing. Many researchers and clinicians are seeking
to apply AI within PET, and clinicians will soon find themselves engaging with
AI-based applications all along the chain of molecular imaging, from image
reconstruction to enhanced reporting. This expanding presence of AI in PET
imaging will result in greater demand for educational resources for those
unfamiliar with AI. The objective of this article to is provide an illustrated
guide to the core principles of modern AI, with specific focus on aspects that
are most likely to be encountered in PET imaging. We describe convolutional
neural networks, algorithm training, and explain the components of the commonly
used U-Net for segmentation and image synthesis.
Related papers
- Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - Case Studies on X-Ray Imaging, MRI and Nuclear Imaging [0.0]
We will focus on how AI-based approaches, particularly the use of Convolutional Neural Networks (CNN), can assist in disease detection through medical imaging technology.
CNN is a commonly used approach for image analysis due to its ability to extract features from raw input images.
arXiv Detail & Related papers (2023-06-03T09:05:35Z) - Current State of Community-Driven Radiological AI Deployment in Medical
Imaging [1.474525456020066]
This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium.
We identify barriers between AI-model development in research labs and subsequent clinical deployment.
We discuss various AI integration points in a clinical Radiology workflow.
arXiv Detail & Related papers (2022-12-29T05:17:59Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
There is no clear definition of what is meant by Human Centered Artificial Intelligence.
This paper introduces the term HCAI agent to refer to any physical or software computational agent equipped with AI components.
We see the notion of HCAI agent, together with its components and functions, as a way to bridge the technical and non-technical discussions on human-centered AI.
arXiv Detail & Related papers (2021-12-29T09:58:59Z) - Artificial Intelligence-Based Detection, Classification and
Prediction/Prognosis in PET Imaging: Towards Radiophenomics [2.2509387878255818]
This work reviews AI-based techniques, with a special focus on oncological PET and PET/CT imaging.
There is a spectrum of tumor histologies from benign to malignant that can be identified by AI-based classification approaches.
Radiomics analysis has the potential to be utilized as a noninvasive technique for the accurate characterization of tumors.
arXiv Detail & Related papers (2021-10-20T01:05:47Z) - Potential Applications of Artificial Intelligence and Machine Learning
in Radiochemistry and Radiochemical Engineering [0.0]
Artificial intelligence and machine learning are poised to disrupt PET imaging from bench to clinic.
In this perspective we offer insights into how the technology could be applied to improve the design and synthesis of new radiopharmaceuticals for PET imaging.
arXiv Detail & Related papers (2021-08-05T18:58:56Z) - Artificial Intelligence in PET: an Industry Perspective [3.084117449495927]
Artificial intelligence (AI) has significant potential to positively impact and advance medical imaging, including positron emission tomography (PET) imaging applications.
AI poses industry-specific challenges which will need to be addressed and overcome to maximize the future potentials of AI in PET.
This paper provides an overview of these industry-specific challenges for the development, standardization, commercialization, and clinical adoption of AI, and explores the potential enhancements to PET imaging brought on by AI in the near future.
arXiv Detail & Related papers (2021-07-14T14:47:24Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Photonics for artificial intelligence and neuromorphic computing [52.77024349608834]
Photonic integrated circuits have enabled ultrafast artificial neural networks.
Photonic neuromorphic systems offer sub-nanosecond latencies.
These systems could address the growing demand for machine learning and artificial intelligence.
arXiv Detail & Related papers (2020-10-30T21:41:44Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.