論文の概要: Meta-Prior: Meta learning for Adaptive Inverse Problem Solvers
- arxiv url: http://arxiv.org/abs/2311.18710v1
- Date: Thu, 30 Nov 2023 17:02:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 15:48:14.566726
- Title: Meta-Prior: Meta learning for Adaptive Inverse Problem Solvers
- Title(参考訳): Meta-Prior: 適応的逆問題解のためのメタ学習
- Authors: Matthieu Terris, Thomas Moreau
- Abstract要約: 現実のイメージングの課題は、しばしば真実のデータを欠いているため、従来の監督されたアプローチは効果がない。
本手法では,様々な画像処理タスクに対してメタモデルを訓練し,特定のタスクに対して効率的に微調整を行う。
簡単な設定で、このアプローチはベイズ最適推定器を復元し、我々のアプローチの健全性を示す。
- 参考スコア(独自算出の注目度): 9.364509804053275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have become a foundational tool for addressing imaging
inverse problems. They are typically trained for a specific task, with a
supervised loss to learn a mapping from the observations to the image to
recover. However, real-world imaging challenges often lack ground truth data,
rendering traditional supervised approaches ineffective. Moreover, for each new
imaging task, a new model needs to be trained from scratch, wasting time and
resources. To overcome these limitations, we introduce a novel approach based
on meta-learning. Our method trains a meta-model on a diverse set of imaging
tasks that allows the model to be efficiently fine-tuned for specific tasks
with few fine-tuning steps. We show that the proposed method extends to the
unsupervised setting, where no ground truth data is available. In its bilevel
formulation, the outer level uses a supervised loss, that evaluates how well
the fine-tuned model performs, while the inner loss can be either supervised or
unsupervised, relying only on the measurement operator. This allows the
meta-model to leverage a few ground truth samples for each task while being
able to generalize to new imaging tasks. We show that in simple settings, this
approach recovers the Bayes optimal estimator, illustrating the soundness of
our approach. We also demonstrate our method's effectiveness on various tasks,
including image processing and magnetic resonance imaging.
- Abstract(参考訳): ディープニューラルネットワークは、画像逆問題に対処するための基礎ツールとなっている。
それらは通常、特定のタスクのために訓練され、観察から回復するための画像へのマッピングを学ぶために教師付き損失を伴う。
しかし、現実のイメージングの課題は、しばしば真実のデータを欠いているため、従来の監督されたアプローチは効果がない。
さらに、新しいイメージングタスクごとに、新しいモデルをゼロからトレーニングし、時間とリソースを浪費する必要があります。
これらの制約を克服するために,メタラーニングに基づく新しいアプローチを導入する。
本手法では,様々な画像処理タスクのメタモデルを訓練し,特定のタスクに対して効率的に微調整できる。
提案手法は教師なし設定に拡張され,基底真理データが得られないことを示す。
2段階の定式化では、外側のレベルは教師付き損失を使用し、細調整されたモデルの性能を評価する一方、内部の損失は教師なしまたは教師なしのどちらかであり、測定演算子のみに依存する。
これによりメタモデルは、新しいイメージングタスクに一般化しながら、各タスクにいくつかの基底真理サンプルを活用できます。
単純な設定で、このアプローチはベイズ最適推定器を復元し、我々のアプローチの健全性を示す。
また, 画像処理や磁気共鳴イメージングなどの様々なタスクにおいて, 本手法の有効性を示す。
関連論文リスト
- Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
我々はData Adaptive Tracebackと呼ばれる新しい適応フレームワークを提案する。
具体的には、ゼロショット法を用いて、事前学習データの最もダウンストリームなタスク関連サブセットを抽出する。
我々は、擬似ラベルに基づく半教師付き手法を採用し、事前学習画像の再利用と、半教師付き学習における確証バイアス問題に対処するための視覚言語コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-07-11T18:01:58Z) - Unsupervised Meta-Learning via In-Context Learning [3.4165401459803335]
本稿では,教師なしメタ学習における教師なしメタ学習の一般化能力を活用した新しい手法を提案する。
提案手法は,メタラーニングをシーケンスモデリング問題として再設計し,トランスフォーマーエンコーダがサポート画像からタスクコンテキストを学習できるようにする。
論文 参考訳(メタデータ) (2024-05-25T08:29:46Z) - One-Shot Image Restoration [0.0]
提案手法の適用性, 堅牢性, 計算効率を, 教師付き画像の劣化と超解像に応用できることを実験的に示す。
本結果は,学習モデルのサンプル効率,一般化,時間複雑性を大幅に改善したことを示す。
論文 参考訳(メタデータ) (2024-04-26T14:03:23Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
本稿では,学習用マルチタスクデータの順序を列挙するデータカリキュラム,すなわちData-CUBEを提案する。
タスクレベルでは、タスク間の干渉リスクを最小化するために最適なタスクオーダーを見つけることを目的としている。
インスタンスレベルでは、タスク毎のすべてのインスタンスの難易度を測定し、トレーニングのためにそれらを簡単に微分できるミニバッチに分割します。
論文 参考訳(メタデータ) (2024-01-07T18:12:20Z) - Unsupervised Deep Learning-based Pansharpening with Jointly-Enhanced
Spectral and Spatial Fidelity [4.425982186154401]
本稿では,この手法の可能性をフル活用した,ディープラーニングに基づくパンシャーピングモデルを提案する。
提案モデルでは,パンシャーペンデータのスペクトルと空間的品質を協調的に向上する新たな損失関数を特徴とする。
挑戦的なシナリオで実施された多種多様なテスト画像の実験により,提案手法が技術状況と良好に比較できることが実証された。
論文 参考訳(メタデータ) (2023-07-26T17:25:28Z) - UMat: Uncertainty-Aware Single Image High Resolution Material Capture [2.416160525187799]
本研究では, 物体の単一拡散像から正規性, 特異性, 粗さを復元する学習手法を提案する。
本手法は材料デジタル化における不確実性をモデル化する問題に最初に対処する手法である。
論文 参考訳(メタデータ) (2023-05-25T17:59:04Z) - Hard Patches Mining for Masked Image Modeling [52.46714618641274]
マスク付き画像モデリング(MIM)は、スケーラブルな視覚表現を学習する有望な可能性から、多くの研究の注目を集めている。
我々はMIM事前学習のための新しいフレームワークであるHPM(Hard Patches Mining)を提案する。
論文 参考訳(メタデータ) (2023-04-12T15:38:23Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - DETA: Denoised Task Adaptation for Few-Shot Learning [135.96805271128645]
数ショット学習におけるテスト時間タスク適応は、訓練済みのタスク非依存モデルに適応してタスク固有の知識を取得することを目的としている。
少数のサンプルしか得られないため、支持試料からのイメージノイズ(Xノイズ)またはラベルノイズ(Yノイズ)の悪影響を著しく増幅することができる。
Denoized Task Adaptation (DETA) は、既存のタスク適応アプローチに対して、最初に統合された画像とラベルをデノベートするフレームワークである。
論文 参考訳(メタデータ) (2023-03-11T05:23:20Z) - PatchNR: Learning from Small Data by Patch Normalizing Flow
Regularization [57.37911115888587]
正規化フローに基づく画像の逆問題に対する変分モデリングのための正規化器を提案する。
patchNRと呼ばれる我々の正規化器は、ごく少数の画像のパッチで学習したフローを正規化します。
論文 参考訳(メタデータ) (2022-05-24T12:14:26Z) - Pose Guided Person Image Generation with Hidden p-Norm Regression [113.41144529452663]
ポーズ誘導者画像生成タスクを解くための新しいアプローチを提案する。
提案手法では,各アイデンティティに対するポーズ不変特徴行列を推定し,対象ポーズに条件づけられたターゲットの出現を予測できる。
提案手法は, 上記すべての変種シナリオにおいて, 競合性能を示す。
論文 参考訳(メタデータ) (2021-02-19T17:03:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。