論文の概要: Efficient Baseline for Quantitative Precipitation Forecasting in
Weather4cast 2023
- arxiv url: http://arxiv.org/abs/2311.18806v1
- Date: Thu, 30 Nov 2023 18:51:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 15:10:47.369064
- Title: Efficient Baseline for Quantitative Precipitation Forecasting in
Weather4cast 2023
- Title(参考訳): weather4cast 2023における量的降水予測の効率的なベースライン
- Authors: Akshay Punjabi and Pablo Izquierdo Ayala
- Abstract要約: 計算資源の環境への影響を考慮しつつ,正確な降水予測の必要性に対処する。
本稿では,今後の天気予報イニシアチブのベースラインとして使用される最小限のU-Netアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 1.3053649021965603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate precipitation forecasting is indispensable for informed
decision-making across various industries. However, the computational demands
of current models raise environmental concerns. We address the critical need
for accurate precipitation forecasting while considering the environmental
impact of computational resources and propose a minimalist U-Net architecture
to be used as a baseline for future weather forecasting initiatives.
- Abstract(参考訳): 各種産業における情報意思決定には正確な降水予測が不可欠である。
しかし、現在のモデルの計算要求は環境問題を引き起こす。
計算資源の環境影響を考慮しつつ、正確な降水予測の必要性に対処し、将来の気象予報イニシアチブのベースラインとなる最小主義的なu-netアーキテクチャを提案する。
関連論文リスト
- Multi-Source Temporal Attention Network for Precipitation Nowcasting [4.726419619132143]
降水量は様々な産業で重要であり、気候変動の緩和と適応に重要な役割を果たしている。
降水量予測のための効率的な深層学習モデルを導入し,既存の運用モデルよりも高い精度で降雨を最大8時間予測する。
論文 参考訳(メタデータ) (2024-10-11T09:09:07Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Deep learning for precipitation nowcasting: A survey from the perspective of time series forecasting [4.5424061912112474]
本稿では,ディープラーニングを用いた時系列降水予測モデルの最近の進歩を概観する。
予測モデルを,将来のフレームを予測するためのアプローチに基づいて,テキスト再帰戦略とテキスト多重戦略に分類する。
筆者らは,現在,降水予測のための深層学習モデルの評価を行い,その限界と課題について議論し,いくつかの有望な研究方向性を示す。
論文 参考訳(メタデータ) (2024-06-07T12:07:09Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
ストリーミングデータにおける将来の軌跡を問うベンチマークを導入し,これを「ストリーミング予測」と呼ぶ。
我々のベンチマークは本質的に、スナップショットベースのベンチマークでは見過ごされていない安全上の問題であるエージェントの消失と再出現を捉えている。
我々は,任意のスナップショットベースの予測器をストリーミング予測器に適応させることのできる,"Predictive Streamer"と呼ばれるプラグアンドプレイメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-02T17:13:16Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Encoding Seasonal Climate Predictions for Demand Forecasting with
Modular Neural Network [0.8378605337114742]
本稿では,サプライチェーン機能に対する堅牢で信頼性の高い時系列予測を提供するため,季節的気候予測を符号化する新しい枠組みを提案する。
本実験は, 季節気候予測をモデル化し, 複数の実世界のデータセットに対して約13%から17%の誤差低減を達成できることを示す。
論文 参考訳(メタデータ) (2023-09-05T13:58:59Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
不確かさの定量化は意思決定に不可欠である。
天気予報の不確実性を表す主要なアプローチは、予測の集合を生成することです。
本稿では,これらの予測を歴史的データから学習した深部生成拡散モデルを用いてエミュレートし,計算コストを補正することを提案する。
論文 参考訳(メタデータ) (2023-06-24T22:00:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Short-term precipitation prediction using deep learning [5.1589108738893215]
気象フィールドの1つのフレームを用いた3次元畳み込みニューラルネットワークは降水空間分布を予測することができることを示す。
このネットワークは、気象学の39年 (1980-2018) のデータと、連続した米国上空の毎日の降水に基づいて開発されている。
論文 参考訳(メタデータ) (2021-10-05T06:37:24Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。