HeTriNet: Heterogeneous Graph Triplet Attention Network for
Drug-Target-Disease Interaction
- URL: http://arxiv.org/abs/2312.00189v1
- Date: Thu, 30 Nov 2023 20:55:57 GMT
- Title: HeTriNet: Heterogeneous Graph Triplet Attention Network for
Drug-Target-Disease Interaction
- Authors: Farhan Tanvir, Khaled Mohammed Saifuddin, Tanvir Hossain, Arunkumar
Bagavathi and Esra Akbas
- Abstract summary: We develop a novel Heterogeneous Graph Triplet Attention Network (textttHeTriNet)
textttHeTriNet introduces a novel triplet attention mechanism within this heterogeneous graph structure.
Experimental results on real-world datasets show that textttHeTriNet outperforms several baselines.
- Score: 1.4686956115342287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling the interactions between drugs, targets, and diseases is paramount
in drug discovery and has significant implications for precision medicine and
personalized treatments. Current approaches frequently consider drug-target or
drug-disease interactions individually, ignoring the interdependencies among
all three entities. Within human metabolic systems, drugs interact with protein
targets in cells, influencing target activities and subsequently impacting
biological pathways to promote healthy functions and treat diseases. Moving
beyond binary relationships and exploring tighter triple relationships is
essential to understanding drugs' mechanism of action (MoAs). Moreover,
identifying the heterogeneity of drugs, targets, and diseases, along with their
distinct characteristics, is critical to model these complex interactions
appropriately. To address these challenges, we effectively model the
interconnectedness of all entities in a heterogeneous graph and develop a novel
Heterogeneous Graph Triplet Attention Network (\texttt{HeTriNet}).
\texttt{HeTriNet} introduces a novel triplet attention mechanism within this
heterogeneous graph structure. Beyond pairwise attention as the importance of
an entity for the other one, we define triplet attention to model the
importance of pairs for entities in the drug-target-disease triplet prediction
problem. Experimental results on real-world datasets show that
\texttt{HeTriNet} outperforms several baselines, demonstrating its remarkable
proficiency in uncovering novel drug-target-disease relationships.
Related papers
- A deep graph model for the signed interaction prediction in biological network [1.03121181235382]
Predicting signed interactions in biological networks is crucial for understanding drug mechanisms and facilitating drug repurposing.
textbfRGCNTD is designed to predict both polar (e.g. activation, inhibition) and non-polar (e.g. binding, affect) chemical-gene interactions.
We introduce new evaluation metrics, textitAUCtextsubscriptpolarity and textitCP@500, to assess the model's ability to differentiate interaction types.
arXiv Detail & Related papers (2024-07-10T04:28:21Z) - MOTIVE: A Drug-Target Interaction Graph For Inductive Link Prediction [0.29998889086656577]
This paper introduces MOTIVE, a Morphological cOmpound Target Interaction Graph dataset comprising Cell Painting features for 11,000 genes and 3,600 compounds.
We provide random, cold-source (new drugs) and cold-target (new genes) data splits to enable rigorous evaluation under realistic use cases.
Our benchmark results show that graph neural networks that use Cell Painting features consistently outperform those that learn from graph structure alone.
arXiv Detail & Related papers (2024-06-12T21:18:14Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
arXiv Detail & Related papers (2024-05-23T13:25:20Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - Communicative Subgraph Representation Learning for Multi-Relational
Inductive Drug-Gene Interaction Prediction [17.478102754113294]
We propose a novel Communicative Subgraph representation learning for Multi-relational Inductive drug-Gene interactions prediction (CoSMIG)
The model strengthened the relations on the drug-gene graph through a communicative message passing mechanism.
Our method outperformed state-of-the-art baselines in the transductive scenarios and achieved superior performance in the inductive ones.
arXiv Detail & Related papers (2022-05-12T08:53:45Z) - Hierarchical Graph Representation Learning for the Prediction of
Drug-Target Binding Affinity [7.023929372010717]
We propose a novel hierarchical graph representation learning model for the drug-target binding affinity prediction, namely HGRL-DTA.
In this paper, we adopt a message broadcasting mechanism to integrate the hierarchical representations learned from the global-level affinity graph and the local-level molecular graph. Besides, we design a similarity-based embedding map to solve the cold start problem of inferring representations for unseen drugs and targets.
arXiv Detail & Related papers (2022-03-22T04:50:16Z) - Modular multi-source prediction of drug side-effects with DruGNN [3.229607826010618]
Drug Side-Effects (DSEs) have a high impact on public health, care system costs, and drug discovery processes.
To predict their occurrence, it is necessary to integrate data from heterogeneous sources.
In this work, such heterogeneous data is integrated into a graph dataset, expressively representing the relational information between different entities.
Graph Neural Networks (GNNs) are exploited to predict DSEs on our dataset with very promising results.
arXiv Detail & Related papers (2022-02-15T09:41:05Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - An Interpretable Framework for Drug-Target Interaction with Gated Cross
Attention [4.746451824931381]
In this study, we propose a novel interpretable framework that can provide reasonable cues for the interaction sites.
We elaborately design a gated cross-attention mechanism that crossly attends drug and target features by constructing explicit interactions between these features.
The experimental results show the efficacy of the proposed method in two DTI datasets.
arXiv Detail & Related papers (2021-09-17T05:53:40Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Distance-aware Molecule Graph Attention Network for Drug-Target Binding
Affinity Prediction [54.93890176891602]
We propose a diStance-aware Molecule graph Attention Network (S-MAN) tailored to drug-target binding affinity prediction.
As a dedicated solution, we first propose a position encoding mechanism to integrate the topological structure and spatial position information into the constructed pocket-ligand graph.
We also propose a novel edge-node hierarchical attentive aggregation structure which has edge-level aggregation and node-level aggregation.
arXiv Detail & Related papers (2020-12-17T17:44:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.