論文の概要: SurreyAI 2023 Submission for the Quality Estimation Shared Task
- arxiv url: http://arxiv.org/abs/2312.00525v1
- Date: Fri, 1 Dec 2023 12:01:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-04 14:57:20.063250
- Title: SurreyAI 2023 Submission for the Quality Estimation Shared Task
- Title(参考訳): 品質評価共有タスクへのsurreyai 2023の提出
- Authors: Archchana Sindhujan, Diptesh Kanojia, Constantin Orasan, Tharindu
Ranasinghe
- Abstract要約: 本稿では,SurreyAIチームがWMT23のSentence-Level Direct Assessmentタスクに導入したアプローチについて述べる。
提案手法はTransQuestフレームワーク上に構築され、様々なオートエンコーダで事前訓練された言語モデルを探索する。
評価はスピアマンとピアソンの相関係数を用いて, 機械予測品質スコアと人的判断との関係を評価する。
- 参考スコア(独自算出の注目度): 17.122657128702276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quality Estimation (QE) systems are important in situations where it is
necessary to assess the quality of translations, but there is no reference
available. This paper describes the approach adopted by the SurreyAI team for
addressing the Sentence-Level Direct Assessment shared task in WMT23. The
proposed approach builds upon the TransQuest framework, exploring various
autoencoder pre-trained language models within the MonoTransQuest architecture
using single and ensemble settings. The autoencoder pre-trained language models
employed in the proposed systems are XLMV, InfoXLM-large, and XLMR-large. The
evaluation utilizes Spearman and Pearson correlation coefficients, assessing
the relationship between machine-predicted quality scores and human judgments
for 5 language pairs (English-Gujarati, English-Hindi, English-Marathi,
English-Tamil and English-Telugu). The MonoTQ-InfoXLM-large approach emerges as
a robust strategy, surpassing all other individual models proposed in this
study by significantly improving over the baseline for the majority of the
language pairs.
- Abstract(参考訳): 品質評価(QE)システムは翻訳の質を評価するために必要な状況において重要であるが、参照はできない。
本稿では,SurreyAIチームがWMT23におけるSentence-Level Direct Assessment共有タスクに対して採用したアプローチについて述べる。
提案したアプローチはTransQuestフレームワークに基づいており、単一およびアンサンブル設定を使用してMonoTransQuestアーキテクチャ内で、さまざまなオートエンコーダで事前訓練された言語モデルを探索する。
提案システムでは,XLMV,InfoXLM-large,XLMR-largeが事前訓練された言語モデルである。
この評価はスピアマンとピアソンの相関係数を用いて,5言語対(英語-Gujarati,英語-Hindi,英語-Marathi,英語-Tamil,英語-Telugu)の機械予測品質スコアと人的判断の関係を評価する。
MonoTQ-InfoXLM-largeアプローチはロバストな戦略として現れ、この研究で提案された他のすべての個別モデルよりも、言語ペアの大部分のベースラインを大幅に改善する。
関連論文リスト
- P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
大きな言語モデル(LLM)は、翻訳、コード生成、推論といったタスクにまたがる様々な多言語機能を示す。
以前の評価では、その範囲を基本自然言語処理(NLP)や、独立した機能固有のタスクに制限することが多かった。
我々は、これらのベンチマークの有用性に関する以前の研究の監視に対処するため、大規模ベンチマークから利用可能な、合理的なベンチマークを選択するパイプラインを提案する。
本稿では,P-MMEvalを提案する。P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval。
論文 参考訳(メタデータ) (2024-11-14T01:29:36Z) - CANTONMT: Investigating Back-Translation and Model-Switch Mechanisms for Cantonese-English Neural Machine Translation [9.244878233604819]
本稿では、カントン語から英語への機械翻訳モデルの開発と評価について述べる。
オンラインで利用可能なさまざまなコーパスと事前処理とクリーニングを組み合わせることで、新しい並列コーパスが作成されている。
合成並列コーパス生成を支援するために、Webスクレイピングを通じてモノリンガルなカントンデータセットが作成されている。
論文 参考訳(メタデータ) (2024-05-13T20:37:04Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - Rethinking Word-Level Auto-Completion in Computer-Aided Translation [76.34184928621477]
Word-Level Auto-Completion (WLAC) はコンピュータ翻訳において重要な役割を果たす。
それは、人間の翻訳者に対して単語レベルの自動補完提案を提供することを目的としている。
我々は、この質問に答えるために測定可能な基準を導入し、既存のWLACモデルがこの基準を満たしていないことを発見する。
評価基準の遵守を促進することによってWLAC性能を向上させる効果的な手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T03:11:46Z) - Strategies for improving low resource speech to text translation relying
on pre-trained ASR models [59.90106959717875]
本稿では,テキスト翻訳(ST)における低音源音声の性能向上のための技術と知見について述べる。
本研究は,英語とポルトガル語,タマシェク語とフランス語の2つの言語対について,シミュレーションおよび実低資源設定について実験を行った。
論文 参考訳(メタデータ) (2023-05-31T21:58:07Z) - Alibaba-Translate China's Submission for WMT 2022 Quality Estimation
Shared Task [80.22825549235556]
我々は、UniTEという品質評価共有タスクにおいて、文レベルのMQMベンチマークを提出する。
具体的には、トレーニング中に3種類の入力形式と事前学習された言語モデルを組み合わせたUniTEのフレームワークを用いる。
その結果,我々のモデルは多言語・英語・ロシア語設定では第1位,英語・ドイツ語・中国語設定では第2位に達した。
論文 参考訳(メタデータ) (2022-10-18T08:55:27Z) - Ensemble Fine-tuned mBERT for Translation Quality Estimation [0.0]
本稿では,WMT 2021 QE共有タスクの提出について論じる。
提案システムは多言語BERT(mBERT)に基づく回帰モデルのアンサンブルである。
ピアソンの相関に匹敵する性能を示し、いくつかの言語対に対してMAE/RMSEのベースラインシステムを破る。
論文 参考訳(メタデータ) (2021-09-08T20:13:06Z) - An Exploratory Analysis of Multilingual Word-Level Quality Estimation
with Cross-Lingual Transformers [3.4355075318742165]
単語レベルの多言語QEモデルは、現在の言語固有のモデルと同等に機能することを示す。
ゼロショットおよび少数ショットQEの場合、他の言語ペアで訓練されたモデルから、任意の新しい言語ペアに対する単語レベルの品質を正確に予測できることを実証する。
論文 参考訳(メタデータ) (2021-05-31T23:21:10Z) - Ensemble-based Transfer Learning for Low-resource Machine Translation
Quality Estimation [1.7188280334580195]
第5回機械翻訳会議(WMT20)の文レベルQE共有タスクに焦点を当てます。
このようなQEデータ不足の課題を克服するために、トランスファーラーニングを備えたアンサンブルベースの予測器推定QEモデルを提案する。
個々の言語で事前学習されたモデルと異なるレベルの並列学習コーパスと、ピアソンの相関値0.298とを組み合わせたアンサンブルモデルにおいて、最も優れた性能を実現する。
論文 参考訳(メタデータ) (2021-05-17T06:02:17Z) - COMET: A Neural Framework for MT Evaluation [8.736370689844682]
COMETは多言語機械翻訳評価モデルのトレーニングのためのニューラルネットワークフレームワークである。
本フレームワークは、MT品質をより正確に予測するために、ソース入力とターゲット言語参照変換の両方からの情報を利用する。
我々のモデルは、WMT 2019 Metricsの共有タスクにおいて、新しい最先端のパフォーマンスを実現し、ハイパフォーマンスシステムに対する堅牢性を実証する。
論文 参考訳(メタデータ) (2020-09-18T18:54:15Z) - On the Limitations of Cross-lingual Encoders as Exposed by
Reference-Free Machine Translation Evaluation [55.02832094101173]
クロスランガルエンコーダの評価は通常、教師付き下流タスクにおけるゼロショットのクロスランガル転送または教師なしのクロスランガル類似性によって行われる。
本稿では、ソーステキストと(低品質な)システム翻訳を直接比較するMT(Reference-free Machine Translation)の評価について述べる。
事前学習したM-BERTとLASERで得られた最先端の言語間セマンティック表現に基づいて,様々なメトリクスを体系的に検討する。
参照なしMT評価において,セマンティックエンコーダとしての性能は低く,その2つの重要な限界を同定する。
論文 参考訳(メタデータ) (2020-05-03T22:10:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。