論文の概要: A safe exploration approach to constrained Markov decision processes
- arxiv url: http://arxiv.org/abs/2312.00561v2
- Date: Thu, 23 May 2024 14:20:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-26 20:04:03.344985
- Title: A safe exploration approach to constrained Markov decision processes
- Title(参考訳): マルコフ決定過程に対する安全な探索手法
- Authors: Tingting Ni, Maryam Kamgarpour,
- Abstract要約: 無限水平制限マルコフ決定過程(CMDP)について考察する。
目標は、期待される累積的制約の対象となる累積的報酬を最大化する最適なポリシーを見つけることである。
安全クリティカルなシステムのオンライン学習におけるCMDPの適用により、モデルフリーでシミュレータフリーなアルゴリズムの開発に焦点をあてる。
- 参考スコア(独自算出の注目度): 7.036452261968767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider discounted infinite horizon constrained Markov decision processes (CMDPs) where the goal is to find an optimal policy that maximizes the expected cumulative reward subject to expected cumulative constraints. Motivated by the application of CMDPs in online learning of safety-critical systems, we focus on developing a model-free and simulator-free algorithm that ensures constraint satisfaction during learning. To this end, we develop an interior point approach based on the log barrier function of the CMDP. Under the commonly assumed conditions of Fisher non-degeneracy and bounded transfer error of the policy parameterization, we establish the theoretical properties of the algorithm. In particular, in contrast to existing CMDP approaches that ensure policy feasibility only upon convergence, our algorithm guarantees the feasibility of the policies during the learning process and converges to the $\varepsilon$-optimal policy with a sample complexity of $\tilde{\mathcal{O}}(\varepsilon^{-6})$. In comparison to the state-of-the-art policy gradient-based algorithm, C-NPG-PDA, our algorithm requires an additional $\mathcal{O}(\varepsilon^{-2})$ samples to ensure policy feasibility during learning with the same Fisher non-degenerate parameterization.
- Abstract(参考訳): そこでは,予測累積的制約による期待累積報酬を最大化する最適な政策を見出すことが目的である。
安全クリティカルなシステムのオンライン学習におけるCMDPの適用により,学習時の制約満足度を保証するモデルフリーでシミュレータフリーなアルゴリズムの開発に焦点が当てられている。
この目的のために,CMDPのログバリア関数に基づくインテリアポイントアプローチを開発した。
一般に仮定されるフィッシャー非退化条件と政策パラメータ化の有界移動誤差の下で、アルゴリズムの理論的性質を確立する。
特に、収束時にポリシーの実現性を保証する既存のCMDPアプローチとは対照的に、我々のアルゴリズムは学習過程におけるポリシーの実現性を保証し、サンプル複雑性が$\tilde{\mathcal{O}}(\varepsilon^{-6})$で$\varepsilon$-optimal Policyに収束する。
C-NPG-PDAアルゴリズムと比較して、我々のアルゴリズムは、同じフィッシャー非退化パラメータ化で学習中にポリシーの実現性を確保するために、追加の$\mathcal{O}(\varepsilon^{-2})$サンプルを必要とする。
関連論文リスト
- Near-Optimal Policy Identification in Robust Constrained Markov Decision Processes via Epigraph Form [26.01796404477275]
本稿では,頑健な制約付きMDP(RCMDP)における準最適ポリシーを同定できる最初のアルゴリズムを提案する。
最適ポリシーは、一連の環境における最悪のシナリオにおける制約を満たしながら累積コストを最小化する。
論文 参考訳(メタデータ) (2024-08-29T06:37:16Z) - Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
我々は,非漸近収束を伴う最適決定主義政策を求めるための決定主義的政策勾配原始双対法を開発した。
D-PGPDの一次-双対反復は、最適正則化原始-双対にサブ線形速度で収束することが証明された。
我々の知る限り、これは連続空間制約型MDPに対する決定論的ポリシー探索法を提案する最初の研究であると思われる。
論文 参考訳(メタデータ) (2024-08-19T14:11:04Z) - Confident Natural Policy Gradient for Local Planning in $q_π$-realizable Constrained MDPs [44.69257217086967]
制約付きマルコフ決定プロセス(CMDP)フレームワークは、安全性や他の重要な目的を課すための重要な強化学習アプローチとして出現する。
本稿では,線形関数近似が$q_pi$-realizabilityで与えられる学習問題に対処する。
論文 参考訳(メタデータ) (2024-06-26T17:57:13Z) - On the Global Convergence of Policy Gradient in Average Reward Markov
Decision Processes [50.68789924454235]
我々は、平均報酬マルコフ決定過程(MDP)の文脈における政策勾配の最初の有限時間大域収束解析を示す。
我々の分析によると、ポリシー勾配は、$Oleft(frac1Tright)$のサブリニアレートで最適ポリシーに収束し、$Oleft(log(T)right)$ regretに変換され、$T$は反復数を表す。
論文 参考訳(メタデータ) (2024-03-11T15:25:03Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
無限水平割引マルコフ決定過程(拘束型MDP)の最適ポリシの計算問題について検討する。
我々は, 最適制約付きポリシーに反復的に対応し, 非漸近収束性を持つ2つの単一スケールポリシーに基づく原始双対アルゴリズムを開発した。
我々の知る限り、この研究は制約付きMDPにおける単一時間スケールアルゴリズムの非漸近的な最後の収束結果となる。
論文 参考訳(メタデータ) (2023-06-20T17:27:31Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
逆強化学習(IRL)は報酬関数と関連する最適ポリシーを回復することを目的としている。
IRLの多くのアルゴリズムは本質的にネスト構造を持つ。
我々は、報酬推定精度を損なわないIRLのための新しいシングルループアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-10-04T17:13:45Z) - Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Conservative Natural Policy Gradient Primal-Dual Algorithm [42.83837408373223]
連続状態-作用空間におけるマルコフ決定過程(CMDP)の問題点を考察する。
本稿では,ゼロ制約違反を実現するために,新しい保守的自然ポリシーグラディエント・プライマル・ダイアルアルゴリズム(C-NPG-PD)を提案する。
論文 参考訳(メタデータ) (2022-06-12T22:31:43Z) - Stochastic first-order methods for average-reward Markov decision processes [10.023632561462712]
平均回帰マルコフ決定過程(AMDP)について検討し,政策最適化と政策評価の両面において理論的確証が強い新しい一階法を開発した。
政策評価と政策最適化の部分を組み合わせることで、生成的およびマルコフ的ノイズモデルの両方の下で、AMDPを解くためのサンプル複雑性結果を確立する。
論文 参考訳(メタデータ) (2022-05-11T23:02:46Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
Softmax Policy gradient(PG)メソッドは、現代の強化学習におけるポリシー最適化の事実上の実装の1つです。
ソフトマックス PG 法は、$mathcalS|$ および $frac11-gamma$ の観点から指数時間で収束できることを実証する。
論文 参考訳(メタデータ) (2021-02-22T18:56:26Z) - Fast Global Convergence of Natural Policy Gradient Methods with Entropy
Regularization [44.24881971917951]
自然政策勾配法(NPG)は、最も広く使われている政策最適化アルゴリズムの一つである。
我々は,ソフトマックスパラメータ化の下で,エントロピー規則化NPG法に対する収束保証を開発する。
この結果から, エントロピー正則化の役割を浮き彫りにした。
論文 参考訳(メタデータ) (2020-07-13T17:58:41Z) - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization [105.7510838453122]
制約付きマルコフ決定過程(CMDP)を用いた安全強化学習(SRL)問題について検討する。
本稿では,関数近似設定において,安全な探索を行うCMDPの効率の良いオンラインポリシー最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-03-01T17:47:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。