論文の概要: Resource-constrained knowledge diffusion processes inspired by human
peer learning
- arxiv url: http://arxiv.org/abs/2312.00660v1
- Date: Fri, 1 Dec 2023 15:39:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-04 14:10:00.789490
- Title: Resource-constrained knowledge diffusion processes inspired by human
peer learning
- Title(参考訳): 人間ピアラーニングに触発された資源制約付き知識拡散過程
- Authors: Ehsan Beikihassan, Amy K.Hoover, Ioannis Koutis, Ali Parviz, Niloofar
Aghaieabiane
- Abstract要約: 対話型人工学習者のネットワークにおける自然知識拡散過程について検討する。
このようなプロセスが実際にトレーニングリソースを効果的に活用できることを実証的に示す。
- 参考スコア(独自算出の注目度): 2.1963472367016426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a setting where a population of artificial learners is given, and
the objective is to optimize aggregate measures of performance, under
constraints on training resources. The problem is motivated by the study of
peer learning in human educational systems. In this context, we study natural
knowledge diffusion processes in networks of interacting artificial learners.
By `natural', we mean processes that reflect human peer learning where the
students' internal state and learning process is mostly opaque, and the main
degree of freedom lies in the formation of peer learning groups by a
coordinator who can potentially evaluate the learners before assigning them to
peer groups. Among else, we empirically show that such processes indeed make
effective use of the training resources, and enable the design of modular
neural models that have the capacity to generalize without being prone to
overfitting noisy labels.
- Abstract(参考訳): 人工学習者の集団が与えられる環境について考察し,その目的は,学習資源の制約の下で,パフォーマンスの集約的尺度を最適化することにある。
この問題は、人間の教育システムにおけるピアラーニングの研究に動機づけられている。
本研究では,対話型人工学習者のネットワークにおける自然知識拡散過程について検討する。
自然」とは,学生の内的状態や学習過程がほとんど不透明である人間のピア学習を反映したプロセスであり,学習者をピアグループに割り当てる前に潜在的に評価できるコーディネータによるピア学習グループの形成に自由度が主である。
特に,このようなプロセスが実際にトレーニングリソースを効果的に活用し,ノイズの多いラベルを過度に当てはまることなく一般化する能力を持つモジュール型ニューラルモデルの設計を可能にすることを実証的に示す。
関連論文リスト
- Unveiling the Role of Expert Guidance: A Comparative Analysis of User-centered Imitation Learning and Traditional Reinforcement Learning [0.0]
本研究では,従来の強化学習法と比較して,模倣学習の性能,堅牢性,限界について検討する。
この研究から得られた洞察は、人間中心の人工知能の進歩に寄与する。
論文 参考訳(メタデータ) (2024-10-28T18:07:44Z) - LLMs Could Autonomously Learn Without External Supervision [36.36147944680502]
大規模言語モデル(LLM)は、伝統的に人間の注釈付きデータセットと事前定義されたトレーニング目標に結び付けられてきた。
本稿では,LLMのための自律学習手法を提案する。
本手法は, LLMに対して, 文章と直接対話して自己学習を行う能力を与える。
論文 参考訳(メタデータ) (2024-06-02T03:36:37Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
本稿では,コンパクトなニューラルポリシーの解釈可能性について,不整合表現レンズを用いて検討する。
決定木を利用して,ロボット学習における絡み合いの要因を抽出する。
学習したニューラルダイナミクスの絡み合いを計測する解釈可能性指標を導入する。
論文 参考訳(メタデータ) (2022-10-13T01:10:41Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
我々は脳のメタラーニングと連想機構に基づく生涯学習のパラダイムを設計する。
知識の抽出と知識の記憶という2つの側面から問題に取り組む。
提案した学習パラダイムが,異なるタスクのモデルを同じ最適に収束させることができることを理論的に分析した。
論文 参考訳(メタデータ) (2022-08-27T09:27:36Z) - Learning from humans: combining imitation and deep reinforcement
learning to accomplish human-level performance on a virtual foraging task [6.263481844384228]
本研究では,ヒトデータを用いたバイオインスパイアされた採餌政策の学習方法を開発した。
オープンフィールドの養殖環境に人間が仮想的に没入し、最高の報酬を集めるために訓練される実験を行う。
論文 参考訳(メタデータ) (2022-03-11T20:52:30Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
人間や動物が行うような現実世界の具体的学習は、連続的で非エポゾディックな世界にある。
RLの一般的なベンチマークタスクはエピソジックであり、試行錯誤によってエージェントに複数の試行を行う環境がリセットされる。
この相違は、擬似環境向けに開発されたRLアルゴリズムを現実世界のプラットフォーム上で実行しようとする場合、大きな課題となる。
論文 参考訳(メタデータ) (2021-12-17T16:28:06Z) - Unsupervised Domain Adaptive Person Re-Identification via Human Learning
Imitation [67.52229938775294]
近年、研究者は、異なる人物の再識別データセット間のドメインギャップを減らすために、教師学生フレームワークを彼らの手法に活用することを提案している。
近年の教員中心の枠組みに基づく手法に着想を得て,異なる側面から人間の学習過程を模倣するためのさらなる探究を提案する。
論文 参考訳(メタデータ) (2021-11-28T01:14:29Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Active Hierarchical Imitation and Reinforcement Learning [0.0]
本研究では,我々が開発した階層的模倣強化学習フレームワークを用いて,様々な模倣学習アルゴリズムを探索し,アクティブ学習アルゴリズムを設計した。
実験の結果,daggerと報酬ベースのアクティブラーニング手法は,トレーニング過程において身体的および精神的により多くの努力を省きながら,よりよいパフォーマンスを達成できることがわかった。
論文 参考訳(メタデータ) (2020-12-14T08:27:27Z) - Introspective Learning by Distilling Knowledge from Online
Self-explanation [36.91213895208838]
本稿では,オンライン自己説明から知識を抽出し,イントロスペクティブ学習の実装を提案する。
イントロスペクティブ学習法で訓練されたモデルは、標準学習法で訓練されたモデルよりも優れていた。
論文 参考訳(メタデータ) (2020-09-19T02:05:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。