論文の概要: Deep Generative Attacks and Countermeasures for Data-Driven Offline Signature Verification
- arxiv url: http://arxiv.org/abs/2312.00987v2
- Date: Wed, 17 Jul 2024 21:44:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 21:51:10.538118
- Title: Deep Generative Attacks and Countermeasures for Data-Driven Offline Signature Verification
- Title(参考訳): データ駆動型オフライン信号検証のための深部生成攻撃と対策
- Authors: An Ngo, Rajesh Kumar, Phuong Cao,
- Abstract要約: 本研究では,データ駆動型オフライン署名検証(DASV)システムの生成攻撃に対する脆弱性について検討する。
本稿では,DASVシステムに挑戦する誤認識シグネチャを作成する上で,VAE(Variversaational Autoencoders)とCGAN(Conditional Generative Adrial Networks)の有効性について検討する。
- 参考スコア(独自算出の注目度): 2.0368479127360093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the vulnerabilities of data-driven offline signature verification (DASV) systems to generative attacks and proposes robust countermeasures. Specifically, we explore the efficacy of Variational Autoencoders (VAEs) and Conditional Generative Adversarial Networks (CGANs) in creating deceptive signatures that challenge DASV systems. Using the Structural Similarity Index (SSIM) to evaluate the quality of forged signatures, we assess their impact on DASV systems built with Xception, ResNet152V2, and DenseNet201 architectures. Initial results showed False Accept Rates (FARs) ranging from 0% to 5.47% across all models and datasets. However, exposure to synthetic signatures significantly increased FARs, with rates ranging from 19.12% to 61.64%. The proposed countermeasure, i.e., retraining the models with real + synthetic datasets, was very effective, reducing FARs between 0% and 0.99%. These findings emphasize the necessity of investigating vulnerabilities in security systems like DASV and reinforce the role of generative methods in enhancing the security of data-driven systems.
- Abstract(参考訳): 本研究では,データ駆動型オフライン署名検証(DASV)システムの生成攻撃に対する脆弱性を調査し,堅牢な対策を提案する。
具体的には,DASVシステムに挑戦する擬似シグネチャを作成する上で,変分オートエンコーダ(VAE)と条件生成適応ネットワーク(CGAN)の有効性について検討する。
本研究では,Xception,ResNet152V2,DenseNet201アーキテクチャで構築されたDASVシステムに対するそれらの影響を評価する。
最初の結果は、すべてのモデルとデータセットでFAR(False Accept Rates)が0%から5.47%まで変化した。
しかし、合成シグネチャへの曝露はFARを著しく増加させ、19.12%から61.64%に増加した。
提案した対策、すなわち、実際の+合成データセットによるモデルの再トレーニングは非常に効果的であり、FARを0%から0.99%に削減した。
これらの知見は,DASVなどのセキュリティシステムの脆弱性の調査の必要性を強調し,データ駆動システムのセキュリティ向上における生成手法の役割を強化する。
関連論文リスト
- Optimizing Intrusion Detection System Performance Through Synergistic Hyperparameter Tuning and Advanced Data Processing [3.3148772440755527]
侵入検知は、悪意のある活動に対するコンピュータネットワークの確保に不可欠である。
そこで本研究では,ディープラーニングとデータバランシング,高次元化を組み合わせたシステムを提案する。
CIC IDS 2018やCIC IDS 2017のような広範なデータセットをトレーニングすることで、当社のモデルは堅牢なパフォーマンスと一般化を示している。
論文 参考訳(メタデータ) (2024-08-03T14:09:28Z) - Deep Learning for Network Anomaly Detection under Data Contamination: Evaluating Robustness and Mitigating Performance Degradation [0.0]
ディープラーニング(DL)は、サイバーセキュリティのためのネットワーク異常検出(NAD)において重要なツールとして登場した。
異常検出のためのDLモデルはデータから特徴や学習パターンを抽出するのに優れているが、データ汚染には弱い。
本研究では,データ汚染に対する6つの教師なしDLアルゴリズムのロバスト性を評価する。
論文 参考訳(メタデータ) (2024-07-11T19:47:37Z) - Enhancing IoT Security with CNN and LSTM-Based Intrusion Detection Systems [0.23408308015481666]
提案モデルは,畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)ディープラーニング(DL)モデルを組み合わせて構成する。
この融合により、IoTトラフィックをバイナリカテゴリ、良性、悪意のあるアクティビティに検出し、分類することが可能になる。
提案モデルの精度は98.42%,最小損失は0.0275である。
論文 参考訳(メタデータ) (2024-05-28T22:12:15Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
新たな任意の任意配置(AIAO)戦略は、微調整による除去に耐性を持たせる。
拡散モデルの入力/出力空間のバックドアを設計する既存の手法とは異なり,本手法では,サンプルサブパスの特徴空間にバックドアを埋め込む方法を提案する。
MS-COCO,AFHQ,LSUN,CUB-200,DreamBoothの各データセットに関する実証研究により,AIAOの堅牢性が確認された。
論文 参考訳(メタデータ) (2024-05-01T12:03:39Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Machine learning-based network intrusion detection for big and
imbalanced data using oversampling, stacking feature embedding and feature
extraction [6.374540518226326]
侵入検知システム(IDS)は、悪意あるアクターや活動を検出することによって相互接続ネットワークを保護する上で重要な役割を果たす。
本稿では,データ不均衡にRandom Oversampling (RO) を用いる新しいMLベースのネットワーク侵入検出モデルと,次元削減のためのStacking Feature Embedding (PCA)を提案する。
CIC-IDS 2017データセットを使用すると、DT、RF、ETモデルは99.99%の精度に達し、DTとRFモデルはCIC-IDS 2018データセットで99.94%の精度が得られる。
論文 参考訳(メタデータ) (2024-01-22T05:49:41Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNは、クエリ許可を通じてターゲットモデルを複製するための悪行であるモデル盗難攻撃に対して脆弱である。
異なるシナリオに対応するために,3つのモデルステルス攻撃を導入する。
論文 参考訳(メタデータ) (2023-12-18T05:42:31Z) - SigScatNet: A Siamese + Scattering based Deep Learning Approach for
Signature Forgery Detection and Similarity Assessment [1.474723404975345]
本稿では,偽造署名の急増に対処する革新的なソリューションであるSigScatNetを紹介する。
Scattering Waveletによって強化されたシームズディープラーニングネットワークは、シグネチャの偽造を検知し、シグネチャ類似性を評価するために使用される。
実験では、SigScatNetは、ICDAR SigCompのオランダのデータセットで3.689%、CEDARのデータセットで0.0578%の非同値のEqual Error Rateが得られる。
論文 参考訳(メタデータ) (2023-11-09T18:38:46Z) - Robust Trajectory Prediction against Adversarial Attacks [84.10405251683713]
ディープニューラルネットワーク(DNN)を用いた軌道予測は、自律運転システムにおいて不可欠な要素である。
これらの手法は敵の攻撃に対して脆弱であり、衝突などの重大な結果をもたらす。
本研究では,敵対的攻撃に対する軌道予測モデルを保護するための2つの重要な要素を同定する。
論文 参考訳(メタデータ) (2022-07-29T22:35:05Z) - Transferable, Controllable, and Inconspicuous Adversarial Attacks on
Person Re-identification With Deep Mis-Ranking [83.48804199140758]
システム出力のランキングを乱す学習とミスランクの定式化を提案する。
また,新たなマルチステージネットワークアーキテクチャを開発することで,バックボックス攻撃を行う。
そこで本手法では, 異なるマルチショットサンプリングにより, 悪意のある画素数を制御することができる。
論文 参考訳(メタデータ) (2020-04-08T18:48:29Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。