論文の概要: PAC Privacy Preserving Diffusion Models
- arxiv url: http://arxiv.org/abs/2312.01201v3
- Date: Wed, 17 Apr 2024 16:18:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 19:20:39.444236
- Title: PAC Privacy Preserving Diffusion Models
- Title(参考訳): 拡散モデルを保存するPACプライバシ
- Authors: Qipan Xu, Youlong Ding, Xinxi Zhang, Jie Gao, Hao Wang,
- Abstract要約: 拡散モデルは、高いプライバシーと視覚的品質の両方で画像を生成することができる。
しかし、特定のデータ属性の民営化において堅牢な保護を確保するといった課題が発生する。
PACプライバシー保護拡散モデル(PAC Privacy Preserving Diffusion Model)を導入する。
- 参考スコア(独自算出の注目度): 6.299952353968428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data privacy protection is garnering increased attention among researchers. Diffusion models (DMs), particularly with strict differential privacy, can potentially produce images with both high privacy and visual quality. However, challenges arise such as in ensuring robust protection in privatizing specific data attributes, areas where current models often fall short. To address these challenges, we introduce the PAC Privacy Preserving Diffusion Model, a model leverages diffusion principles and ensure Probably Approximately Correct (PAC) privacy. We enhance privacy protection by integrating a private classifier guidance into the Langevin Sampling Process. Additionally, recognizing the gap in measuring the privacy of models, we have developed a novel metric to gauge privacy levels. Our model, assessed with this new metric and supported by Gaussian matrix computations for the PAC bound, has shown superior performance in privacy protection over existing leading private generative models according to benchmark tests.
- Abstract(参考訳): データプライバシー保護は、研究者の間で注目を集めている。
拡散モデル(DM)、特に厳密な差分プライバシーは、高いプライバシーと視覚的品質の両方で画像を生成する可能性がある。
しかしながら、特定のデータ属性の民営化において堅牢な保護を確保すること、現在のモデルがしばしば不足する領域などの課題が発生する。
これらの課題に対処するため,PACプライバシー保護拡散モデル(PAC Privacy Preserving Diffusion Model)を導入する。
我々は、Langevinサンプリングプロセスにプライベート分類器ガイダンスを統合することにより、プライバシー保護を強化する。
さらに、モデルのプライバシを測定する際のギャップを認識し、プライバシレベルを測定するための新しい指標を開発した。
PACバウンドに対するガウス行列計算によって評価された本モデルでは,ベンチマークテストにより,既存の主要なプライベート生成モデルに比べて,プライバシ保護性能が優れていた。
関連論文リスト
- Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
ローカル微分プライバシー(LDP)は、ユーザーが外部の関係者を信頼することなく、強力なプライバシー保証を提供する。
本稿では,ベイジアン・フレームワークであるベイジアン・コーディネート・ディファレンシャル・プライバシ(BCDP)を提案する。
論文 参考訳(メタデータ) (2024-10-24T03:39:55Z) - Fine-Tuning Language Models with Differential Privacy through Adaptive Noise Allocation [33.795122935686706]
本稿では,モデルパラメータの重要性に基づいて適応的に付加雑音を割り当てる新しいアルゴリズムANADPを提案する。
ANADPは,一連のデータセットにおいて,通常の微調整と従来のDP微調整のパフォーマンスギャップを狭めることを実証する。
論文 参考訳(メタデータ) (2024-10-03T19:02:50Z) - Differentially Private Fine-Tuning of Diffusion Models [22.454127503937883]
微分プライバシーと拡散モデル(DM)の統合は、有望だが挑戦的なフロンティアを示している。
この分野での最近の進歩は、公開データによる事前学習によって高品質な合成データを生成する可能性を強調している。
本稿では,プライバシとユーティリティのトレードオフを高めるために,トレーニング可能なパラメータの数を最小限に抑える,プライベート拡散モデルに最適化された戦略を提案する。
論文 参考訳(メタデータ) (2024-06-03T14:18:04Z) - Tighter Privacy Auditing of DP-SGD in the Hidden State Threat Model [40.4617658114104]
本研究では,攻撃者が最終モデルにのみアクセスでき,中間更新の可視性のない脅威モデルに焦点を当てる。
実験の結果,本手法は隠蔽状態モデル監査における従来の試みより一貫して優れていたことがわかった。
我々の結果は、この脅威モデル内で達成可能なプライバシー保証の理解を促進する。
論文 参考訳(メタデータ) (2024-05-23T11:38:38Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - Rethinking Disclosure Prevention with Pointwise Maximal Leakage [36.3895452861944]
本稿では,秘密の$X$の低エントロピー機能の価値を開示し,実用性を実現するユーティリティとプライバシの一般モデルを提案する。
我々は、大衆の意見に反して、有意義な推論によるプライバシー保証を提供することを証明している。
PMLベースのプライバシは互換性があることを示し、差分プライバシーのような既存の概念に対する洞察を提供する。
論文 参考訳(メタデータ) (2023-03-14T10:47:40Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - On the Statistical Complexity of Estimation and Testing under Privacy Constraints [17.04261371990489]
差分プライバシー下での統計的テストのパワーをプラグアンドプレイ方式で特徴付ける方法を示す。
プライバシ保護のレベルが非常に高い場合にのみ、プライバシの維持が顕著なパフォーマンス低下をもたらすことを示す。
最後に,プライベート凸解法であるDP-SGLDアルゴリズムを高信頼度で最大推定できることを示した。
論文 参考訳(メタデータ) (2022-10-05T12:55:53Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
本稿では,大規模なトランスフォーマーベース言語モデルのためのSDPを実現するための,シンプルで効果的なジャストファイントゥンツースプライバシ機構を提案する。
実験により, カナリア挿入攻撃に対して頑健でありながら, 高い性能が得られた。
論文 参考訳(メタデータ) (2022-04-15T22:36:55Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。