Evaluating the Security of Satellite Systems
- URL: http://arxiv.org/abs/2312.01330v1
- Date: Sun, 3 Dec 2023 09:38:28 GMT
- Title: Evaluating the Security of Satellite Systems
- Authors: Roy Peled, Eran Aizikovich, Edan Habler, Yuval Elovici, Asaf Shabtai,
- Abstract summary: This paper presents a comprehensive taxonomy of adversarial tactics, techniques, and procedures explicitly targeting satellites.
We examine the space ecosystem including the ground, space, Communication, and user segments, highlighting their architectures, functions, and vulnerabilities.
We propose a novel extension of the MITRE ATT&CK framework to categorize satellite attack techniques across the adversary lifecycle from reconnaissance to impact.
- Score: 24.312198733476063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Satellite systems are facing an ever-increasing amount of cybersecurity threats as their role in communications, navigation, and other services expands. Recent papers have examined attacks targeting satellites and space systems; however, they did not comprehensively analyze the threats to satellites and systematically identify adversarial techniques across the attack lifecycle. This paper presents a comprehensive taxonomy of adversarial tactics, techniques, and procedures explicitly targeting LEO satellites. First, we analyze the space ecosystem including the ground, space, Communication, and user segments, highlighting their architectures, functions, and vulnerabilities. Then, we examine the threat landscape, including adversary types, and capabilities, and survey historical and recent attacks such as jamming, spoofing, and supply chain. Finally, we propose a novel extension of the MITRE ATT&CK framework to categorize satellite attack techniques across the adversary lifecycle from reconnaissance to impact. The taxonomy is demonstrated by modeling high-profile incidents, including the Viasat attack that disrupted Ukraine's communications. The taxonomy provides the foundation for the development of defenses against emerging cyber risks to space assets. The proposed threat model will advance research in the space domain and contribute to the security of the space domain against sophisticated attacks.
Related papers
- Securing Satellite Link Segment: A Secure-by-Component Design [2.933774251508721]
This paper examines two Earth observation (EO) missions, one utilizing a single low Earth orbit (LEO) satellite and another through a network of satellites, employing a secure-by-component design strategy.
This approach begins by defining the scope of technical security engineering, decomposing the system into components and data flows, and enumerating attack surfaces.
It proceeds by identifying threats to low-level components, applying secure-by-design principles, redesigning components into secure blocks in alignment with the Space Attack Research & Tactic Analysis (SPARTA) framework, and crafting statements to the system design.
arXiv Detail & Related papers (2024-11-19T16:45:12Z) - Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
This paper systematically quantifies the robustness of VLA-based robotic systems.
We introduce an untargeted position-aware attack objective that leverages spatial foundations to destabilize robotic actions.
We also design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments.
arXiv Detail & Related papers (2024-11-18T01:52:20Z) - A Sharded Blockchain-Based Secure Federated Learning Framework for LEO Satellite Networks [4.034610694515541]
Low Earth Orbit (LEO) satellite networks are increasingly essential for space-based artificial intelligence (AI) applications.
As commercial use expands, LEO satellite networks face heightened cyberattack risks.
We propose a sharded blockchain-based federated learning framework for LEO networks, called SBFL-LEO.
arXiv Detail & Related papers (2024-11-09T10:22:52Z) - Infiltrating the Sky: Data Delay and Overflow Attacks in Earth Observation Constellations [13.197457702744991]
Low Earth Orbit (LEO) Earth Observation (EO) satellites have changed the way we monitor Earth.
EO satellites have very limited downlink communication capability, limited by transmission bandwidth, number and location of ground stations, and small transmission windows due to high velocity satellite movement.
In this paper, we investigate a new attack surface exposed by resource competition in EO constellations, targeting the delay or drop of Earth monitoring data using legitimate EO services.
arXiv Detail & Related papers (2024-09-02T02:20:13Z) - Principles of Designing Robust Remote Face Anti-Spoofing Systems [60.05766968805833]
This paper sheds light on the vulnerabilities of state-of-the-art face anti-spoofing methods against digital attacks.
It presents a comprehensive taxonomy of common threats encountered in face anti-spoofing systems.
arXiv Detail & Related papers (2024-06-06T02:05:35Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - Updated Standard for Secure Satellite Communications: Analysis of Satellites, Attack Vectors, Existing Standards, and Enterprise and Security Architectures [0.0]
There is a considerable gap in the industry regarding a generic security standard framework for satellite communication and space data systems.
This project report will focus on identifying, categorizing, comparing, and assessing elements, threat landscape, enterprise security architectures, and available public standards of satellite communication and space data systems.
arXiv Detail & Related papers (2023-10-29T18:39:23Z) - SemProtector: A Unified Framework for Semantic Protection in Deep Learning-based Semantic Communication Systems [51.97204522852634]
We present a unified framework that aims to secure an online semantic communications system with three semantic protection modules.
Specifically, these protection modules are able to encrypt semantics to be transmitted by an encryption method, mitigate privacy risks from wireless channels by a perturbation mechanism, and calibrate distorted semantics at the destination.
Our framework enables an existing online SC system to dynamically assemble the above three pluggable modules to meet customized semantic protection requirements.
arXiv Detail & Related papers (2023-09-04T06:34:43Z) - A Survey of Security in UAVs and FANETs: Issues, Threats, Analysis of Attacks, and Solutions [1.0923877073891446]
It is critical that security is ensured for UAVs and the networks that provide communication between UAVs.
This survey seeks to provide a comprehensive perspective on security within the domain of UAVs and Flying Ad Hoc Networks (FANETs)
arXiv Detail & Related papers (2023-06-25T16:15:40Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.