Infiltrating the Sky: Data Delay and Overflow Attacks in Earth Observation Constellations
- URL: http://arxiv.org/abs/2409.00897v2
- Date: Mon, 16 Sep 2024 19:27:56 GMT
- Title: Infiltrating the Sky: Data Delay and Overflow Attacks in Earth Observation Constellations
- Authors: Xiaojian Wang, Ruozhou Yu, Dejun Yang, Guoliang Xue,
- Abstract summary: Low Earth Orbit (LEO) Earth Observation (EO) satellites have changed the way we monitor Earth.
EO satellites have very limited downlink communication capability, limited by transmission bandwidth, number and location of ground stations, and small transmission windows due to high velocity satellite movement.
In this paper, we investigate a new attack surface exposed by resource competition in EO constellations, targeting the delay or drop of Earth monitoring data using legitimate EO services.
- Score: 13.197457702744991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low Earth Orbit (LEO) Earth Observation (EO) satellites have changed the way we monitor Earth. Acting like moving cameras, EO satellites are formed in constellations with different missions and priorities, and capture vast data that needs to be transmitted to the ground for processing. However, EO satellites have very limited downlink communication capability, limited by transmission bandwidth, number and location of ground stations, and small transmission windows due to high velocity satellite movement. To optimize resource utilization, EO constellations are expected to share communication spectrum and ground stations for maximum communication efficiency. In this paper, we investigate a new attack surface exposed by resource competition in EO constellations, targeting the delay or drop of Earth monitoring data using legitimate EO services. Specifically, an attacker can inject high-priority requests to temporarily preempt low-priority data transmission windows. Furthermore, we show that by utilizing predictable satellite dynamics, an attacker can intelligently target critical data from low-priority satellites, either delaying its delivery or irreversibly dropping the data. We formulate two attacks, the data delay attack and the data overflow attack, design algorithms to assist attackers in devising attack strategies, and analyze their feasibility or optimality in typical scenarios. We then conduct trace-driven simulations using real-world satellite images and orbit data to evaluate the success probability of launching these attacks under realistic satellite communication settings. We also discuss possible defenses against these attacks.
Related papers
- Vehicle Perception from Satellite [54.07157185000604]
The dataset is constructed based on 12 satellite videos and 14 synthetic videos recorded from GTA-V.
It supports several tasks, including tiny object detection, counting and density estimation.
128,801 vehicles are annotated totally, and the number of vehicles in each image varies from 0 to 101.
arXiv Detail & Related papers (2024-02-01T15:59:16Z) - Stitching Satellites to the Edge: Pervasive and Efficient Federated LEO Satellite Learning [1.3121410433987561]
This paper proposes a novel FL-SEC framework that empowers satellites to execute large-scale machine learning (ML) tasks onboard efficiently.
Key components include personalized learning via divide-and-conquer, which identifies and eliminates redundant satellite images, and orbital model retraining, which generates an aggregated "orbital model" per orbit and retrains it before sending to the ground station.
Our approach dramatically reduces FL convergence time by nearly 30 times, and satellite energy consumption down to as low as 1.38 watts, all while maintaining an exceptional accuracy of up to 96%.
arXiv Detail & Related papers (2024-01-28T02:01:26Z) - Evaluating the Security of Satellite Systems [24.312198733476063]
This paper presents a comprehensive taxonomy of adversarial tactics, techniques, and procedures explicitly targeting satellites.
We examine the space ecosystem including the ground, space, Communication, and user segments, highlighting their architectures, functions, and vulnerabilities.
We propose a novel extension of the MITRE ATT&CK framework to categorize satellite attack techniques across the adversary lifecycle from reconnaissance to impact.
arXiv Detail & Related papers (2023-12-03T09:38:28Z) - Secure and Efficient Federated Learning in LEO Constellations using
Decentralized Key Generation and On-Orbit Model Aggregation [1.4952056744888915]
This paper proposes FedSecure, a secure FL approach designed for LEO constellations.
FedSecure preserves the privacy of each satellite's data against eavesdroppers, a curious server, or curious satellites.
It also reduces convergence delay drastically from days to only a few hours, yet achieving high accuracy of up to 85.35%.
arXiv Detail & Related papers (2023-09-04T21:36:46Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Low-Earth Satellite Orbit Determination Using Deep Convolutional
Networks with Satellite Imagery [0.0]
We propose a computer vision based approach that relies on images of the Earth taken by the satellite in real-time to predict its orbit upon losing contact with ground stations.
In contrast to other works, we train neural networks on an image-based dataset and show that the neural networks outperform the de facto standard in orbit determination.
arXiv Detail & Related papers (2023-05-20T21:38:05Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
We present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery.
We observe significant improvements up to 25% absolute mIoU when pre-trained with our proposed method.
We find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme.
arXiv Detail & Related papers (2022-03-11T16:14:14Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
arXiv Detail & Related papers (2021-10-28T14:12:10Z) - Temporally-Transferable Perturbations: Efficient, One-Shot Adversarial
Attacks for Online Visual Object Trackers [81.90113217334424]
We propose a framework to generate a single temporally transferable adversarial perturbation from the object template image only.
This perturbation can then be added to every search image, which comes at virtually no cost, and still, successfully fool the tracker.
arXiv Detail & Related papers (2020-12-30T15:05:53Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.