論文の概要: LLM A*: Human in the Loop Large Language Models Enabled A* Search for Robotics
- arxiv url: http://arxiv.org/abs/2312.01797v2
- Date: Thu, 20 Jun 2024 18:50:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 20:08:09.374329
- Title: LLM A*: Human in the Loop Large Language Models Enabled A* Search for Robotics
- Title(参考訳): LLM A*:ロボットのためのA*検索を可能にするループ大言語モデルの人間
- Authors: Hengjia Xiao, Peng Wang,
- Abstract要約: 本研究は,ロボットなどの移動体エージェントの(パス)計画において,Large Language Models(LLM)がいかに役立つかに焦点を当てる。
LLM A* という新しいフレームワークは LLM のコモンセンスを活用することを目的としており、ユーティリティ最適化 A* は少数ショットに近い経路計画を容易にするために提案されている。
このアプローチでは、人間からのフィードバックを受け取り、計画プロセス全体を(ホワイトボックスのように)人間に透明にします。
- 参考スコア(独自算出の注目度): 3.567107449359775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research focuses on how Large Language Models (LLMs) can help with (path) planning for mobile embodied agents such as robots, in a human-in-the-loop and interactive manner. A novel framework named LLM A*, aims to leverage the commonsense of LLMs, and the utility-optimal A* is proposed to facilitate few-shot near-optimal path planning. Prompts are used for two main purposes: 1) to provide LLMs with essential information like environments, costs, heuristics, etc.; 2) to communicate human feedback on intermediate planning results to LLMs. This approach takes human feedback on board and renders the entire planning process transparent (akin to a `white box') to humans. Moreover, it facilitates code-free path planning, thereby fostering the accessibility and inclusiveness of artificial intelligence techniques to communities less proficient in coding. Comparative analysis against A* and RL demonstrates that LLM A* exhibits greater efficiency in terms of search space and achieves paths comparable to A* while outperforming RL. The interactive nature of LLM A* also makes it a promising tool for deployment in collaborative human-robot tasks. Codes and Supplemental Materials can be found at GitHub: https://github.com/speedhawk/LLM-A-.
- Abstract(参考訳): 本研究では,大規模言語モデル(LLMs)がロボットなどの移動体エージェントを,ループ内および対話的な方法で(パス)計画する上で,どのように役立つかに焦点を当てる。
LLM A* という新しいフレームワークは LLM のコモンセンスを活用することを目的としており、ユーティリティ最適化 A* は少数ショットに近い経路計画を容易にするために提案されている。
プロンプトは2つの主な目的に使用される。
1)環境、コスト、ヒューリスティックス等の重要な情報を提供する。
;
2) 中間計画結果に対するフィードバックを LLM に伝達する。
このアプローチでは、人間からのフィードバックを受け取り、計画プロセス全体の透過性(“ホワイトボックス”に相当)を人間に与えます。
さらに、コーディングに熟練していないコミュニティへの人工知能技術のアクセシビリティと包摂性を向上する。
A* と RL との比較分析により、LLM A* は探索空間においてより効率が高く、RL を上回りながら A* に匹敵する経路を達成できることを示した。
LLM A*のインタラクティブな性質は、協調的な人間ロボットタスクにデプロイするための有望なツールでもある。
Codes and Supplemental MaterialsはGitHubにある。
関連論文リスト
- LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning [91.95362946266577]
経路計画はロボット工学と自律航法における基本的な科学的問題である。
A*やその変種のような伝統的なアルゴリズムは、パスの妥当性を保証することができるが、状態空間が大きくなるにつれて、計算とメモリの非効率が著しく低下する。
本稿では, A* の正確なパスフィニング能力と LLM のグローバルな推論能力とを相乗的に組み合わせた LLM ベースの経路計画法を提案する。
このハイブリッドアプローチは、特に大規模シナリオにおいて、パス妥当性の完全性を維持しながら、時間と空間の複雑さの観点からパスフィニング効率を向上させることを目的としている。
論文 参考訳(メタデータ) (2024-06-20T01:24:30Z) - RePrompt: Planning by Automatic Prompt Engineering for Large Language Models Agents [27.807695570974644]
大規模言語モデル(LLM)は、従来の自然言語処理以外の領域で顕著な成功を収めている。
LLMエージェントのプロンプトにおけるステップバイステップ命令を最適化する「段階的な降下」を行う新しい手法である textscRePrompt を提案する。
論文 参考訳(メタデータ) (2024-06-17T01:23:11Z) - Sub-goal Distillation: A Method to Improve Small Language Agents [21.815417165548187]
大規模言語モデル(LLM)は対話型タスクにおけるエージェントとして大きな可能性を証明している。
数十億のパラメータを持つLLMの性能を、はるかに小さな言語モデルに転送する手法を提案する。
困難かつマルチタスクな対話型テキスト環境であるScienceWorldでは,基本動作のみに基づく標準的な模倣学習を16.7%超えている。
論文 参考訳(メタデータ) (2024-05-04T20:34:06Z) - Empowering Large Language Models on Robotic Manipulation with Affordance Prompting [23.318449345424725]
大規模な言語モデルは、制御シーケンスを適切に生成することで物理世界と相互作用することができない。
既存のLLMベースのアプローチでは、事前定義されたスキルや事前訓練されたサブ政治に頼ることでこの問題を回避することができる。
サブタスクプランナとモーションコントローラの両方をLLM+A(ffordance)と呼ぶフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-17T03:06:32Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Efficient Tool Use with Chain-of-Abstraction Reasoning [65.18096363216574]
大規模言語モデル(LLM)は、現実世界の知識に対する推論の基礎となる必要がある。
マルチステップ推論問題におけるツールの実行には,微調整LDMエージェントの課題が残されている。
マルチステップ推論におけるツールの活用方法として, LLM の新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-30T21:53:30Z) - LgTS: Dynamic Task Sampling using LLM-generated sub-goals for
Reinforcement Learning Agents [10.936460061405157]
LgTS (LLM-Guided Teacher-Student Learning) を提案する。
提案手法では,提案したサブゴールを達成するための事前訓練されたポリシーも必要としない。
論文 参考訳(メタデータ) (2023-10-14T00:07:03Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
広範囲なテキストコーパスで訓練されたLarge Language Models (LLM) は、幅広い自然言語処理(NLP)タスクの先導的なソリューションとして登場した。
その顕著な性能にもかかわらず、これらのモデルは、人間の指示を誤解したり、偏見のあるコンテンツを生成したり、事実的に誤った情報を生成するといった、ある種の制限を受ける傾向にある。
本調査では,これらのアライメント技術の概要について概観する。
論文 参考訳(メタデータ) (2023-07-24T17:44:58Z) - Enabling Intelligent Interactions between an Agent and an LLM: A Reinforcement Learning Approach [31.6589518077397]
大規模言語モデル(LLM)は、大量のテキストデータセットから得られた膨大な量の世界の知識を符号化する。
LLMは、高レベルな命令を提供することで、複雑なシーケンシャルな意思決定タスクを解決するための実施エージェントを支援することができる。
本研究では,高レベルの命令に対してLLMを問合せする必要がある場合に学習する強化学習ベースのアプローチである When2Ask を提案する。
論文 参考訳(メタデータ) (2023-06-06T11:49:09Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
より制御可能で安定した応答を実現するために、6種類のシンプルなローコードビジュアルプログラミングインタラクションを組み込んでいる。
ユーザフレンドリなインタラクション,制御可能な生成,広い適用性という,低コード LLM の3つの利点を強調した。
論文 参考訳(メタデータ) (2023-04-17T09:27:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。