論文の概要: Differentiable Point-based Inverse Rendering
- arxiv url: http://arxiv.org/abs/2312.02480v2
- Date: Mon, 25 Mar 2024 06:22:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 02:15:55.021213
- Title: Differentiable Point-based Inverse Rendering
- Title(参考訳): 微分可能点ベース逆レンダリング
- Authors: Hoon-Gyu Chung, Seokjun Choi, Seung-Hwan Baek,
- Abstract要約: DPIR(DPIR)は、様々な照明下で撮影された画像を解析・合成し、形状と空間変化のBRDFを推定する手法である。
我々は、幾何学のためのハイブリッドな点-体積表現と反射率のための正規化された基底-BRDF表現を考案する。
本評価は,DPIRの再現精度,計算効率,メモリフットプリントにおいて,従来の作業よりも優れていたことを示す。
- 参考スコア(独自算出の注目度): 9.88708409803907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present differentiable point-based inverse rendering, DPIR, an analysis-by-synthesis method that processes images captured under diverse illuminations to estimate shape and spatially-varying BRDF. To this end, we adopt point-based rendering, eliminating the need for multiple samplings per ray, typical of volumetric rendering, thus significantly enhancing the speed of inverse rendering. To realize this idea, we devise a hybrid point-volumetric representation for geometry and a regularized basis-BRDF representation for reflectance. The hybrid geometric representation enables fast rendering through point-based splatting while retaining the geometric details and stability inherent to SDF-based representations. The regularized basis-BRDF mitigates the ill-posedness of inverse rendering stemming from limited light-view angular samples. We also propose an efficient shadow detection method using point-based shadow map rendering. Our extensive evaluations demonstrate that DPIR outperforms prior works in terms of reconstruction accuracy, computational efficiency, and memory footprint. Furthermore, our explicit point-based representation and rendering enables intuitive geometry and reflectance editing.
- Abstract(参考訳): 本研究では,多彩な照明下で撮像された画像の形状と空間的変化を推定する解析バイシンセシス法DPIRを提案する。
この目的のために、我々はポイントベースレンダリングを採用し、ボリュームレンダリングの典型である1線あたりの複数のサンプリングの必要性を排除し、逆レンダリングの速度を大幅に向上させる。
この考え方を実現するために,幾何のハイブリッド点体積表現と反射率の正規化基底-BRDF表現を考案した。
ハイブリッド幾何表現は、SDFベースの表現に固有の幾何学的詳細と安定性を維持しつつ、点ベースのスプラッティングによる高速レンダリングを可能にする。
正規化ベース-BRDFは、限られた光視角のサンプルから生じる逆レンダリングの不備を緩和する。
また,点ベースシャドウマップレンダリングを用いた効率的なシャドウ検出手法を提案する。
DPIRは, 再現精度, 計算効率, メモリフットプリントにおいて, 先行作業よりも優れていたことを示す。
さらに、明示的な点ベース表現とレンダリングにより、直感的な幾何学と反射率の編集が可能となる。
関連論文リスト
- RISE-SDF: a Relightable Information-Shared Signed Distance Field for Glossy Object Inverse Rendering [26.988572852463815]
本稿では,新しいエンド・ツー・エンド・エンド・リライトブル・ニューラル・リバース・レンダリングシステムを提案する。
本アルゴリズムは,逆レンダリングとリライトにおける最先端性能を実現する。
実験により, 逆レンダリングおよびリライティングにおける最先端性能が得られた。
論文 参考訳(メタデータ) (2024-09-30T09:42:10Z) - 3D Reconstruction with Fast Dipole Sums [12.865206085308728]
マルチビュー画像から高品質な3D再構成手法を提案する。
我々は、暗黙の幾何学と放射場を、高密度点雲の点当たりの属性として表現する。
これらのクエリは、レイトレーシングを使用して画像の効率と差別化を容易にする。
論文 参考訳(メタデータ) (2024-05-27T03:23:25Z) - RNb-NeuS: Reflectance and Normal-based Multi-View 3D Reconstruction [3.1820300989695833]
本稿では,光度ステレオにより得られる多視点反射率と正規写像を統合するための多目的パラダイムを提案する。
提案手法では, 反射率と正規度の画素ワイドな共同パラメータ化を, 放射光のベクトルとして用いた。
これは、高い曲率または低い視認性を持つ領域の詳細な3D再構成を大幅に改善する。
論文 参考訳(メタデータ) (2023-12-02T19:49:27Z) - Relightable 3D Gaussians: Realistic Point Cloud Relighting with BRDF Decomposition and Ray Tracing [21.498078188364566]
フォトリアリスティックなリライトを実現するために,新しい微分可能な点ベースレンダリングフレームワークを提案する。
提案したフレームワークは、メッシュベースのグラフィクスパイプラインを、編集、トレース、リライトを可能にするポイントベースのパイプラインで革新する可能性を示している。
論文 参考訳(メタデータ) (2023-11-27T18:07:58Z) - Anti-Aliased Neural Implicit Surfaces with Encoding Level of Detail [54.03399077258403]
本稿では,高頻度幾何細部リカバリとアンチエイリアス化された新しいビューレンダリングのための効率的なニューラル表現であるLoD-NeuSを提案する。
我々の表現は、光線に沿った円錐状のフラストラム内の多面体化から空間特徴を集約する。
論文 参考訳(メタデータ) (2023-09-19T05:44:00Z) - Multiscale Representation for Real-Time Anti-Aliasing Neural Rendering [84.37776381343662]
Mip-NeRFは、スケール情報をエンコードする円錐フラストラムとしてマルチスケール表現を提案する。
我々は,リアルタイムなアンチエイリアスレンダリングのためのマルチスケールな明示的表現であるmip voxel grids (Mip-VoG)を提案する。
私たちのアプローチは、マルチスケールのトレーニングとリアルタイムのアンチエイリアスレンダリングを同時に提供する最初の方法です。
論文 参考訳(メタデータ) (2023-04-20T04:05:22Z) - Differentiable Rendering of Neural SDFs through Reparameterization [32.47993049026182]
ニューラルSDFにおける幾何学的シーンパラメータに対する正しい勾配を自動的に計算する手法を提案する。
提案手法は,地域サンプリング技術に基づいて,不連続性を考慮した連続的なワーピング機能を開発する。
我々の微分可能法は、多視点画像からの神経形状を最適化し、同等の3D再構成を生成できる。
論文 参考訳(メタデータ) (2022-06-10T20:30:26Z) - Shape As Points: A Differentiable Poisson Solver [118.12466580918172]
本稿では,ポアソン表面再構成 (PSR) の微分可能な定式化を用いた,微分可能な点間メッシュ層を提案する。
微分可能なPSR層は、暗示指標場を介して、明示的な3D点表現を3Dメッシュに効率よく、かつ、差別的にブリッジすることができる。
ニューラル暗黙の表現と比較して、私たちのシェープ・アズ・ポイント(SAP)モデルはより解釈可能で、軽量で、1桁の推論時間を加速します。
論文 参考訳(メタデータ) (2021-06-07T09:28:38Z) - Efficient and Differentiable Shadow Computation for Inverse Problems [64.70468076488419]
微分可能幾何計算は画像に基づく逆問題に対する関心が高まっている。
微分可能な可視性とソフトシャドウ計算のための効率的かつ効率的なアプローチを提案する。
定式化は微分可能であるため, テクスチャ, 照明, 剛体ポーズ, 画像からの変形回復などの逆問題を解くために使用できる。
論文 参考訳(メタデータ) (2021-04-01T09:29:05Z) - Light Field Reconstruction Using Convolutional Network on EPI and
Extended Applications [78.63280020581662]
スパースビューからの光場再構成のための新しい畳み込みニューラルネットワーク(CNN)ベースのフレームワークを開発した。
最先端のアルゴリズムと比較して,提案フレームワークの高性能と堅牢性を実証する。
論文 参考訳(メタデータ) (2021-03-24T08:16:32Z) - Neural BRDF Representation and Importance Sampling [79.84316447473873]
本稿では,リフレクタンスBRDFデータのコンパクトニューラルネットワークに基づく表現について述べる。
BRDFを軽量ネットワークとしてエンコードし、適応角サンプリングによるトレーニングスキームを提案する。
複数の実世界のデータセットから等方性および異方性BRDFの符号化結果を評価する。
論文 参考訳(メタデータ) (2021-02-11T12:00:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。