論文の概要: LExCI: A Framework for Reinforcement Learning with Embedded Systems
- arxiv url: http://arxiv.org/abs/2312.02739v1
- Date: Tue, 5 Dec 2023 13:06:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-06 15:43:33.204146
- Title: LExCI: A Framework for Reinforcement Learning with Embedded Systems
- Title(参考訳): lexci:組込みシステムによる強化学習のためのフレームワーク
- Authors: Kevin Badalian, Lucas Koch, Tobias Brinkmann, Mario Picerno, Marius
Wegener, Sung-Yong Lee, Jakob Andert
- Abstract要約: 本稿では,RLライブラリと組込みシステムとのギャップを埋める LExCI というフレームワークを提案する。
オープンソースライブラリのRLlibを使用して,組み込みシステム上でエージェントをトレーニングするための,無償かつオープンソースツールを提供する。
操作性は、最先端の2つのRL-algorithmと、迅速な制御プロトタイピングシステムで実証されている。
- 参考スコア(独自算出の注目度): 1.9131868049527916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in artificial intelligence (AI) have led to its application in many
areas of everyday life. In the context of control engineering, reinforcement
learning (RL) represents a particularly promising approach as it is centred
around the idea of allowing an agent to freely interact with its environment to
find an optimal strategy. One of the challenges professionals face when
training and deploying RL agents is that the latter often have to run on
dedicated embedded devices. This could be to integrate them into an existing
toolchain or to satisfy certain performance criteria like real-time
constraints. Conventional RL libraries, however, cannot be easily utilised in
conjunction with that kind of hardware. In this paper, we present a framework
named LExCI, the Learning and Experiencing Cycle Interface, which bridges this
gap and provides end-users with a free and open-source tool for training agents
on embedded systems using the open-source library RLlib. Its operability is
demonstrated with two state-of-the-art RL-algorithms and a rapid control
prototyping system.
- Abstract(参考訳): 人工知能(AI)の進歩は、日常生活の多くの分野で応用されている。
制御工学の文脈では、強化学習(RL)は特に有望なアプローチであり、エージェントが環境と自由に対話して最適な戦略を見つけるという考え方を中心にしている。
RLエージェントのトレーニングとデプロイにおいてプロフェッショナルが直面する課題のひとつは、RLエージェントが専用の組み込みデバイス上で動作しなければならないことだ。
これは既存のツールチェーンに統合したり、リアルタイム制約のような特定のパフォーマンス基準を満たすためかもしれません。
しかし、従来のRLライブラリはそのようなハードウェアと組み合わせて簡単に利用することはできない。
本稿では,このギャップを橋渡しし,オープンソースライブラリrllibを用いて組込みシステム上でエージェントをトレーニングするための無償かつオープンソースツールを提供する,学習と体験のサイクルインタフェースであるlexciというフレームワークを提案する。
操作性は2つの最先端RLアルゴリズムと高速制御プロトタイピングシステムで実証される。
関連論文リスト
- RL-GPT: Integrating Reinforcement Learning and Code-as-policy [82.1804241891039]
本稿では,低速エージェントと高速エージェントからなる2レベル階層型フレームワークRL-GPTを提案する。
遅いエージェントはコーディングに適したアクションを分析し、速いエージェントはコーディングタスクを実行する。
この分解は、各エージェントが特定のタスクに効果的に集中し、パイプライン内で非常に効率的なことを証明します。
論文 参考訳(メタデータ) (2024-02-29T16:07:22Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - OpenRL: A Unified Reinforcement Learning Framework [19.12129820612253]
先進的な強化学習(RL)フレームワークであるOpenRLを紹介する。
シングルエージェントの課題から複雑なマルチエージェントシステムまで、さまざまなタスクに対応するように設計されている。
自然言語処理(NLP)とRLを統合することで、研究者はRLトレーニングと言語中心のタスクを効果的に組み合わせることができる。
論文 参考訳(メタデータ) (2023-12-20T12:04:06Z) - Katakomba: Tools and Benchmarks for Data-Driven NetHack [52.0035089982277]
NetHackは強化学習研究のフロンティアとして知られている。
採用には、リソースワイド、実装ワイド、ベンチマークワイドの3つの大きな障害がある、と私たちは主張しています。
オフラインの強化学習コミュニティに慣れ親しんだワークフローの基礎を提供するオープンソースライブラリを開発した。
論文 参考訳(メタデータ) (2023-06-14T22:50:25Z) - A Mini Review on the utilization of Reinforcement Learning with OPC UA [0.9208007322096533]
強化学習(Reinforcement Learning, RL)は、ロボット工学、自然言語処理、ゲームプレイといった様々な分野に応用された強力な機械学習パラダイムである。
この可能性を完全に活用する鍵は、既存の産業システムへのRLのシームレスな統合である。
この研究は、このギャップを埋めるために、両方の技術の技術的な概要を簡潔に提供し、半発掘的な文献レビューを実施している。
論文 参考訳(メタデータ) (2023-05-24T13:03:48Z) - Karolos: An Open-Source Reinforcement Learning Framework for Robot-Task
Environments [0.3867363075280544]
強化学習(RL)研究において、シミュレーションはアルゴリズム間のベンチマークを可能にする。
本稿では,ロボット応用のためのフレームワークであるKarolosを紹介する。
コードはオープンソースでGitHubに公開されており、ロボット工学におけるRLアプリケーションの研究を促進することを目的としている。
論文 参考訳(メタデータ) (2022-12-01T23:14:02Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
DRLをベースとしたエージェントの性能を最適化し,その動作を保証することが重要である。
本稿では,ドメイン知識を制約付きDRLトレーニングループに組み込む新しい手法を提案する。
我々の実験は、専門家の知識を活用するために我々のアプローチを用いることで、エージェントの安全性と性能が劇的に向上することを示した。
論文 参考訳(メタデータ) (2022-06-20T07:19:38Z) - Scenic4RL: Programmatic Modeling and Generation of Reinforcement
Learning Environments [89.04823188871906]
リアルタイム戦略(RTS)環境では,多様な現実シナリオの生成が難しい。
既存のシミュレータのほとんどは環境をランダムに生成することに頼っている。
我々は、研究者を支援するために、既存の形式シナリオ仕様言語であるSCENICを採用する利点を紹介する。
論文 参考訳(メタデータ) (2021-06-18T21:49:46Z) - Podracer architectures for scalable Reinforcement Learning [23.369001500657028]
強化学習(RL)エージェントを大規模に訓練する方法はまだ活発な研究分野である。
このレポートでは、TPUはスケーラブルで効率的で再現性の高い方法でRLエージェントをトレーニングするのに特に適しています。
論文 参考訳(メタデータ) (2021-04-13T15:05:35Z) - Integrating Distributed Architectures in Highly Modular RL Libraries [4.297070083645049]
ほとんどの人気のある強化学習ライブラリは、高度にモジュール化されたエージェントの構成性を主張している。
本稿では、RLエージェントを独立した再利用可能なコンポーネントによって異なるスケールで定義できる汎用的アプローチを提案する。
論文 参考訳(メタデータ) (2020-07-06T10:22:07Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。