論文の概要: Score-Aware Policy-Gradient Methods and Performance Guarantees using Local Lyapunov Conditions: Applications to Product-Form Stochastic Networks and Queueing Systems
- arxiv url: http://arxiv.org/abs/2312.02804v2
- Date: Fri, 14 Jun 2024 16:10:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 19:33:45.831711
- Title: Score-Aware Policy-Gradient Methods and Performance Guarantees using Local Lyapunov Conditions: Applications to Product-Form Stochastic Networks and Queueing Systems
- Title(参考訳): 局所リアプノフ条件を用いたスコアアウェア政策のグラディエント手法と性能保証:製品型確率ネットワークと待ち行列システムへの応用
- Authors: Céline Comte, Matthieu Jonckheere, Jaron Sanders, Albert Senen-Cerda,
- Abstract要約: 本稿では,ネットワーク上の決定過程(MDP)から得られる定常分布のタイプを利用したモデル強化学習(RL)のポリシー段階的手法を提案する。
具体的には、政策パラメータによってMDPの定常分布がパラメータ化されている場合、平均回帰推定のための既存の政策手法を改善することができる。
- 参考スコア(独自算出の注目度): 1.747623282473278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a policy-gradient method for model-based reinforcement learning (RL) that exploits a type of stationary distributions commonly obtained from Markov decision processes (MDPs) in stochastic networks, queueing systems, and statistical mechanics. Specifically, when the stationary distribution of the MDP belongs to an exponential family that is parametrized by policy parameters, we can improve existing policy gradient methods for average-reward RL. Our key identification is a family of gradient estimators, called score-aware gradient estimators (SAGEs), that enable policy gradient estimation without relying on value-function approximation in the aforementioned setting. This contrasts with other common policy-gradient algorithms such as actor-critic methods. We first show that policy-gradient with SAGE locally converges, including in cases when the objective function is nonconvex, presents multiple maximizers, and the state space of the MDP is not finite. Under appropriate assumptions such as starting sufficiently close to a maximizer, the policy under stochastic gradient ascent with SAGE has an overwhelming probability of converging to the associated optimal policy. Other key assumptions are that a local Lyapunov function exists, and a nondegeneracy property of the Hessian of the objective function holds locally around a maximizer. Furthermore, we conduct a numerical comparison between a SAGE-based policy-gradient method and an actor-critic method. We specifically focus on several examples inspired from stochastic networks, queueing systems, and models derived from statistical physics, where parametrizable exponential families are commonplace. Our results demonstrate that a SAGE-based method finds close-to-optimal policies faster than an actor-critic method.
- Abstract(参考訳): 本稿では,確率ネットワーク,待ち行列システム,統計力学においてマルコフ決定過程(MDP)から得られる定常分布のタイプを利用したモデルベース強化学習(RL)のポリシー段階的手法を提案する。
具体的には、MDPの定常分布が政策パラメータによってパラメータ化される指数族に属する場合、平均回帰RLに対する既存の政策勾配法を改善することができる。
我々の鍵となる同定は、スコア・アウェア・グラデーション・エデュメータ(SAGE)と呼ばれる勾配推定器のファミリーであり、上記の設定における値関数の近似に頼ることなく、政策勾配推定を可能にする。
これはアクター批判法のような他の一般的なポリシー段階のアルゴリズムとは対照的である。
まず、目的関数が非凸である場合、複数の最大値を示し、MDPの状態空間が有限でない場合を含む、SAGEによる政策勾配が局所的に収束することを示す。
最大値に十分近いような適切な仮定の下では、SAGEと確率勾配の下での政策は、関連する最適ポリシーに収束する圧倒的な確率を持つ。
その他の重要な仮定は、局所リアプノフ函数が存在し、目的関数のヘッセンの非退化性は極大函数の周りで局所的に成り立つということである。
さらに,SAGEに基づく政策段階法とアクター批判法との数値比較を行った。
具体的には、確率ネットワーク、キューシステム、統計物理学から派生したモデルから着想を得たいくつかの例に注目し、そこではパラメタトリゾブル指数族が一般的である。
以上の結果から,SAGEに基づく手法はアクター・クリティカルな手法よりも近い最適ポリシーを高速に発見できることが示唆された。
関連論文リスト
- Policy Gradient with Active Importance Sampling [55.112959067035916]
政策勾配法(PG法)はISの利点を大いに生かし、以前に収集したサンプルを効果的に再利用することができる。
しかし、ISは歴史的サンプルを再重み付けするための受動的ツールとしてRLに採用されている。
我々は、政策勾配のばらつきを減らすために、サンプルを収集する最良の行動ポリシーを模索する。
論文 参考訳(メタデータ) (2024-05-09T09:08:09Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
一般的には、収束(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,サンプルの複雑性とデプロイされた決定論的ポリシのパフォーマンスのトレードオフを最適化するために,学習に使用する探索レベルの調整方法を示す。
論文 参考訳(メタデータ) (2024-05-03T16:45:15Z) - On the Global Convergence of Policy Gradient in Average Reward Markov
Decision Processes [50.68789924454235]
我々は、平均報酬マルコフ決定過程(MDP)の文脈における政策勾配の最初の有限時間大域収束解析を示す。
我々の分析によると、ポリシー勾配は、$Oleft(frac1Tright)$のサブリニアレートで最適ポリシーに収束し、$Oleft(log(T)right)$ regretに変換され、$T$は反復数を表す。
論文 参考訳(メタデータ) (2024-03-11T15:25:03Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
無限水平割引マルコフ決定過程(拘束型MDP)の最適ポリシの計算問題について検討する。
我々は, 最適制約付きポリシーに反復的に対応し, 非漸近収束性を持つ2つの単一スケールポリシーに基づく原始双対アルゴリズムを開発した。
我々の知る限り、この研究は制約付きMDPにおける単一時間スケールアルゴリズムの非漸近的な最後の収束結果となる。
論文 参考訳(メタデータ) (2023-06-20T17:27:31Z) - $K$-Nearest-Neighbor Resampling for Off-Policy Evaluation in Stochastic
Control [0.6906005491572401]
歴史的データからポリシーの性能を推定するための,新規な$K$-nearest 隣人パラメトリック手法を提案する。
私たちの分析は、ほとんどのアプリケーションで一般的なプラクティスであるように、エピソード全体のサンプリングを可能にします。
他のOPE手法と比較して、我々のアルゴリズムは最適化を必要とせず、木に基づく近接探索と並列化によって効率的に実装することができ、環境のダイナミクスのパラメトリックモデルを明示的に仮定することはない。
論文 参考訳(メタデータ) (2023-06-07T23:55:12Z) - Anchor-Changing Regularized Natural Policy Gradient for Multi-Objective
Reinforcement Learning [17.916366827429034]
複数の報酬値関数を持つマルコフ決定プロセス(MDP)のポリシー最適化について検討する。
本稿では,順応的な一階法からアイデアを取り入れたアンカー変更型正規化自然政策グラディエントフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-10T21:09:44Z) - Stochastic first-order methods for average-reward Markov decision
processes [10.483316336206903]
平均回帰マルコフ決定過程(AMDP)の問題点について検討する。
我々は,政策評価と最適化の両面において,強力な理論的保証を持つ新しい一階法を開発した。
論文 参考訳(メタデータ) (2022-05-11T23:02:46Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (reps) は多くのシミュレーションと実世界のロボットドメインでポリシー学習に成功した。
勾配に基づく解法を用いる場合、REPSの性能には保証がない。
最適規則化ポリシーに好適な収束を維持するためのパラメータ更新を計算するために,基礎となる決定プロセスへの表現的アクセスを利用する手法を提案する。
論文 参考訳(メタデータ) (2021-03-17T16:22:59Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
本研究は,リスクに敏感な深層強化学習を,分散リスク基準による平均報酬条件下で研究する試みである。
本稿では,ポリシー,ラグランジュ乗算器,フェンシェル双対変数を反復的かつ効率的に更新するアクタ批判アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-28T05:02:26Z) - PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient
Learning [35.044047991893365]
本研究は,政策カバーグラディエント(PC-PG)アルゴリズムを導入し,政策(政策カバー)のアンサンブルを用いて,探索対搾取トレードオフのバランスをとる。
我々は,PC-PG が標準最悪の場合である $ell_infty$ の仮定を超越したモデル不特定性の下で強い保証を持つことを示す。
また、報酬なしと報酬駆動の両方の設定において、様々な領域にまたがる経験的評価で理論を補完する。
論文 参考訳(メタデータ) (2020-07-16T16:57:41Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
2つのディープジェネレータネットワーク(DGN)上に構築された暗黙の分布型アクター批判(IDAC)
半単純アクター (SIA) は、フレキシブルなポリシー分布を利用する。
我々は,代表的OpenAI Gym環境において,IDACが最先端のアルゴリズムより優れていることを観察する。
論文 参考訳(メタデータ) (2020-07-13T02:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。