FollowMe: Vehicle Behaviour Prediction in Autonomous Vehicle Settings
- URL: http://arxiv.org/abs/2304.06121v1
- Date: Wed, 12 Apr 2023 19:05:56 GMT
- Title: FollowMe: Vehicle Behaviour Prediction in Autonomous Vehicle Settings
- Authors: Abduallah Mohamed, Jundi Liu, Linda Ng Boyle, Christian Claudel
- Abstract summary: We introduce a new dataset, the FollowMe dataset, which offers a motion and behavior prediction problem.
We show the design benefits of FollowMe-STGCNN in capturing the interactions that lie within the dataset.
- Score: 2.294014185517203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An ego vehicle following a virtual lead vehicle planned route is an essential
component when autonomous and non-autonomous vehicles interact. Yet, there is a
question about the driver's ability to follow the planned lead vehicle route.
Thus, predicting the trajectory of the ego vehicle route given a lead vehicle
route is of interest. We introduce a new dataset, the FollowMe dataset, which
offers a motion and behavior prediction problem by answering the latter
question of the driver's ability to follow a lead vehicle. We also introduce a
deep spatio-temporal graph model FollowMe-STGCNN as a baseline for the dataset.
In our experiments and analysis, we show the design benefits of FollowMe-STGCNN
in capturing the interactions that lie within the dataset. We contrast the
performance of FollowMe-STGCNN with prior motion prediction models showing the
need to have a different design mechanism to address the lead vehicle following
settings.
Related papers
- BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous
Driving [24.123577277806135]
We pioneer a novel behavior-aware trajectory prediction model (BAT)
Our model consists of behavior-aware, interaction-aware, priority-aware, and position-aware modules.
We evaluate BAT's performance across the Next Generation Simulation (NGSIM), Highway Drone (HighD), Roundabout Drone (RounD), and Macao Connected Autonomous Driving (MoCAD) datasets.
arXiv Detail & Related papers (2023-12-11T13:27:51Z) - Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? [84.17711168595311]
End-to-end autonomous driving has emerged as a promising research direction to target autonomy from a full-stack perspective.
nuScenes dataset, characterized by relatively simple driving scenarios, leads to an under-utilization of perception information in end-to-end models.
We introduce a new metric to evaluate whether the predicted trajectories adhere to the road.
arXiv Detail & Related papers (2023-12-05T11:32:31Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
arXiv Detail & Related papers (2023-11-14T11:53:24Z) - Interaction-Aware Personalized Vehicle Trajectory Prediction Using
Temporal Graph Neural Networks [8.209194305630229]
Existing methods mainly rely on generic trajectory predictions from large datasets.
We propose an approach for interaction-aware personalized vehicle trajectory prediction that incorporates temporal graph neural networks.
arXiv Detail & Related papers (2023-08-14T20:20:26Z) - An End-to-End Vehicle Trajcetory Prediction Framework [3.7311680121118345]
An accurate prediction of a future trajectory does not just rely on the previous trajectory, but also a simulation of the complex interactions between other vehicles nearby.
Most state-of-the-art networks built to tackle the problem assume readily available past trajectory points.
We propose a novel end-to-end architecture that takes raw video inputs and outputs future trajectory predictions.
arXiv Detail & Related papers (2023-04-19T15:42:03Z) - RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments [72.04891523115535]
We propose RSG-Net (Road Scene Graph Net): a graph convolutional network designed to predict potential semantic relationships from object proposals.
The experimental results indicate that this network, trained on Road Scene Graph dataset, could efficiently predict potential semantic relationships among objects around the ego-vehicle.
arXiv Detail & Related papers (2022-07-16T12:40:17Z) - CRAT-Pred: Vehicle Trajectory Prediction with Crystal Graph
Convolutional Neural Networks and Multi-Head Self-Attention [10.83642398981694]
CRAT-Pred is a trajectory prediction model that does not rely on map information.
The model achieves state-of-the-art performance with a significantly lower number of model parameters.
In addition to that, we quantitatively show that the self-attention mechanism is able to learn social interactions between vehicles, with the weights representing a measurable interaction score.
arXiv Detail & Related papers (2022-02-09T14:36:36Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
We tackle the problem of joint perception and motion forecasting in the context of self-driving vehicles.
We propose Net, an end-to-end model that takes as input sensor data, and outputs at each time step object tracks and their future level.
arXiv Detail & Related papers (2020-05-29T17:57:25Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting.
By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets.
arXiv Detail & Related papers (2020-03-25T16:09:54Z) - GISNet: Graph-Based Information Sharing Network For Vehicle Trajectory
Prediction [6.12727713172576]
Many AI-oriented companies, such as Google, Uber and DiDi, are investigating more accurate vehicle trajectory prediction algorithms.
In this paper, we propose a novel graph-based information sharing network (GISNet) that allows the information sharing between the target vehicle and its surrounding vehicles.
arXiv Detail & Related papers (2020-03-22T03:24:31Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
Reasoning over visual data is a desirable capability for robotics and vision-based applications.
In this paper, we present a framework on graph to uncover relationships in different objects in the scene for reasoning about pedestrian intent.
Pedestrian intent, defined as the future action of crossing or not-crossing the street, is a very crucial piece of information for autonomous vehicles.
arXiv Detail & Related papers (2020-02-20T18:50:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.