論文の概要: Fine-Tuning Hybrid Physics-Informed Neural Networks for Vehicle Dynamics Model Estimation
- arxiv url: http://arxiv.org/abs/2409.19647v1
- Date: Sun, 29 Sep 2024 10:33:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:02:09.617491
- Title: Fine-Tuning Hybrid Physics-Informed Neural Networks for Vehicle Dynamics Model Estimation
- Title(参考訳): 自動車ダイナミクスモデル推定のための微調整ハイブリッド物理インフォームドニューラルネットワーク
- Authors: Shiming Fang, Kaiyan Yu,
- Abstract要約: 本稿では、教師付きおよび教師なしの物理インフォームドニューラルネットワーク(PINN)を統合したFTHD法を提案する。
FTHDは、より小さなトレーニングデータセットを使用して、事前トレーニングされたDeep Dynamics Model(DDM)を微調整する。
拡張カルマンフィルタ(EKF)はFTHD内に埋め込まれ、ノイズの多い実世界のデータを効果的に管理し、正確な騒音を確実にする。
その結果, パラメータ推定精度は従来のモデルより大幅に向上し, 既存のモデルよりも優れていた。
- 参考スコア(独自算出の注目度): 2.432448600920501
- License:
- Abstract: Accurate dynamic modeling is critical for autonomous racing vehicles, especially during high-speed and agile maneuvers where precise motion prediction is essential for safety. Traditional parameter estimation methods face limitations such as reliance on initial guesses, labor-intensive fitting procedures, and complex testing setups. On the other hand, purely data-driven machine learning methods struggle to capture inherent physical constraints and typically require large datasets for optimal performance. To address these challenges, this paper introduces the Fine-Tuning Hybrid Dynamics (FTHD) method, which integrates supervised and unsupervised Physics-Informed Neural Networks (PINNs), combining physics-based modeling with data-driven techniques. FTHD fine-tunes a pre-trained Deep Dynamics Model (DDM) using a smaller training dataset, delivering superior performance compared to state-of-the-art methods such as the Deep Pacejka Model (DPM) and outperforming the original DDM. Furthermore, an Extended Kalman Filter (EKF) is embedded within FTHD (EKF-FTHD) to effectively manage noisy real-world data, ensuring accurate denoising while preserving the vehicle's essential physical characteristics. The proposed FTHD framework is validated through scaled simulations using the BayesRace Physics-based Simulator and full-scale real-world experiments from the Indy Autonomous Challenge. Results demonstrate that the hybrid approach significantly improves parameter estimation accuracy, even with reduced data, and outperforms existing models. EKF-FTHD enhances robustness by denoising real-world data while maintaining physical insights, representing a notable advancement in vehicle dynamics modeling for high-speed autonomous racing.
- Abstract(参考訳): 正確なダイナミックモデリングは、特に安全のために正確な動き予測が不可欠である高速かつアジャイルな操作において、自動運転車にとって重要なものである。
従来のパラメータ推定手法では、初期推定への依存、労働集約的な適合手順、複雑なテスト設定などの制限に直面している。
一方、純粋にデータ駆動機械学習手法は、固有の物理的制約を捉えるのに苦労し、通常、最適なパフォーマンスのために大きなデータセットを必要とする。
これらの課題に対処するために,物理に基づくモデリングとデータ駆動技術を組み合わせた,教師付きおよび教師なしの物理情報ニューラルネットワーク(PINN)を統合したFTHD(Fin-Tuning Hybrid Dynamics)手法を提案する。
FTHDは、より小さなトレーニングデータセットを使用して、トレーニング済みのDeep Dynamics Model(DDM)を微調整し、Deep Pacejka Model(DPM)のような最先端の手法よりも優れたパフォーマンスを提供し、オリジナルのDDMよりも優れたパフォーマンスを提供する。
さらに、拡張カルマンフィルタ(EKF)をFTHD(EKF-FTHD)内に埋め込んで、ノイズの多い実世界のデータを効果的に管理し、車両の本質的な物理的特性を保ちながら正確な復調を保証する。
提案するFTHDフレームワークは,BayesRace Physics-based Simulator を用いた大規模シミュレーションと,Indy Autonomous Challenge による実世界の実環境実験により検証された。
その結果, パラメータ推定精度は従来のモデルより大幅に向上し, 既存のモデルよりも優れていた。
EKF-FTHDは、物理的洞察を維持しながら現実世界のデータをノイズ化することでロバスト性を高める。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
データからロボットダイナミクスを学習するためのSIM-FSVGDを提案する。
我々は、ニューラルネットワークモデルのトレーニングを規則化するために、低忠実度物理プリエンスを使用します。
高性能RCレースカーシステムにおけるSIM-to-realギャップのブリッジ化におけるSIM-FSVGDの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-25T11:29:32Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - Deep Dynamics: Vehicle Dynamics Modeling with a Physics-Informed Neural
Network for Autonomous Racing [0.0]
本稿では,自律走行車の車両動力学モデリングのための物理インフォームドニューラルネットワーク(PINN)であるDeep Dynamicsを紹介する。
物理係数推定と力学方程式を組み合わせて、高速で車両状態を正確に予測する。
物理ベースのシミュレータとフルスケールの自律型インディレースカーデータを使用したオープンループとクローズドループのパフォーマンス評価は、ディープダイナミクスをレースカーのダイナミックをモデル化するための有望なアプローチとして強調する。
論文 参考訳(メタデータ) (2023-12-07T15:44:56Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
剛体力学モデルの物理的に一貫した慣性パラメータを同定できる新しいハイブリッドモデルの定式化を提案する。
7自由度マニピュレータ上での最先端の逆動力学モデルに対する我々のアプローチを比較した。
論文 参考訳(メタデータ) (2022-05-27T07:39:28Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems [15.923190628643681]
主な課題の1つは、認識されたデータストリームを生成する根本原因を推測することである。
機械学習ベースの予測モデルの成功は、モデルトレーニングに大量の注釈付きデータを必要とする。
提案するST-PCNNは, 実世界のデータセットと実世界のデータセットの両方において, 極めて少ないインスタンスで最適精度に収束することを示した。
論文 参考訳(メタデータ) (2021-08-11T18:05:55Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Physics-Consistent Data-driven Waveform Inversion with Adaptive Data
Augmentation [12.564534712461331]
我々は、FWI(Full-waveform Inversion)を解くための新しいハイブリッド計算手法を開発した。
トレーニングセットの表現性を向上するデータ拡張戦略を開発する。
本研究では, カルフォルニア州キンベリナの炭素沈殿場に構築された地下地質モデルから得られた弾性地震波形データに本手法を適用した。
論文 参考訳(メタデータ) (2020-09-03T17:12:55Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。