論文の概要: Development and Assessment of Autonomous Vehicles in Both Fully
Automated and Mixed Traffic Conditions
- arxiv url: http://arxiv.org/abs/2312.04805v1
- Date: Fri, 8 Dec 2023 02:40:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-11 16:23:59.236736
- Title: Development and Assessment of Autonomous Vehicles in Both Fully
Automated and Mixed Traffic Conditions
- Title(参考訳): 完全自動・混合交通条件下における自動運転車の開発と評価
- Authors: Ahmed Abdelrahman
- Abstract要約: 本稿では,単一AVの開発から始まり,接続型AVへと進展する多段階アプローチを提案する。
AVの運転性能を検証するために調査を行い、混合交通事例研究に活用する。
その結果, 深部強化学習を用いて, AVは人間の運転性能に到達した運転行動を得た。
AVネットワークにおける共有とケアに基づくV2Vコミュニケーションの採用は、その運転行動を高め、より効果的な行動計画を支援し、AV間の協調行動を促進する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous Vehicle (AV) technology is advancing rapidly, promising a
significant shift in road transportation safety and potentially resolving
various complex transportation issues. With the increasing deployment of AVs by
various companies, questions emerge about how AVs interact with each other and
with human drivers, especially when AVs are prevalent on the roads. Ensuring
cooperative interaction between AVs and between AVs and human drivers is
critical, though there are concerns about possible negative competitive
behaviors. This paper presents a multi-stage approach, starting with the
development of a single AV and progressing to connected AVs, incorporating
sharing and caring V2V communication strategy to enhance mutual coordination. A
survey is conducted to validate the driving performance of the AV and will be
utilized for a mixed traffic case study, which focuses on how the human drivers
will react to the AV driving alongside them on the same road. Results show that
using deep reinforcement learning, the AV acquired driving behavior that
reached human driving performance. The adoption of sharing and caring based V2V
communication within AV networks enhances their driving behavior, aids in more
effective action planning, and promotes collaborative behavior amongst the AVs.
The survey shows that safety in mixed traffic cannot be guaranteed, as we
cannot control human ego-driven actions if they decide to compete with AV.
Consequently, this paper advocates for enhanced research into the safe
incorporation of AVs on public roads.
- Abstract(参考訳): 自動運転車(AV)技術は急速に進歩しており、道路交通の安全性が大きく変化し、様々な複雑な交通問題の解決を期待している。
さまざまな企業によるAVの展開の増加に伴い、AVと人間のドライバーとの相互作用、特に道路でのAVの普及状況に関する疑問が浮かび上がっている。
AVsとAVsと人間のドライバーとの協調的な相互作用を保証することは重要であるが、負の競合行動の可能性には懸念がある。
本稿では,単一のavの開発から始まり,相互協調性を高めるための共有・介護v2v通信戦略を取り入れ,avの接続化を進める多段階的アプローチを提案する。
avの運転性能を検証するために調査を行い、同じ道路を走行するavに人間のドライバーがどう反応するかに焦点を当てた混合交通事例研究に活用する予定である。
その結果, 深部強化学習を用いて, AVは人間の運転性能に到達した運転行動を得た。
AVネットワークにおける共有とケアに基づくV2Vコミュニケーションの採用は、その運転行動を高め、より効果的な行動計画を支援し、AV間の協調行動を促進する。
この調査は、混合交通における安全を保証できないことを示しており、それらがAVと競合することを決めた場合、人間によるエゴ駆動行動を制御することはできない。
そこで本稿は,公道におけるAVの安全化に関する研究の促進を提唱する。
関連論文リスト
- Autonomous Decision Making for UAV Cooperative Pursuit-Evasion Game with Reinforcement Learning [50.33447711072726]
本稿では,マルチロールUAV協調追従ゲームにおける意思決定のための深層強化学習モデルを提案する。
提案手法は,追従回避ゲームシナリオにおけるUAVの自律的意思決定を可能にする。
論文 参考訳(メタデータ) (2024-11-05T10:45:30Z) - Characterizing Behavioral Differences and Adaptations of Automated Vehicles and Human Drivers at Unsignalized Intersections: Insights from Waymo and Lyft Open Datasets [9.080817016043769]
自動運転車(AV)の交通システムへの統合は、道路の安全性と効率を高める前例のない機会である。
本研究では,無人交差点におけるAVと人間駆動車(HV)の行動差と適応性を調べることにより,ギャップを埋めることを目的とする。
この研究は、系統的な手法を用いて、重要な安全性と効率の指標を計算することによって、衝突の合併と交差を識別し分析する。
論文 参考訳(メタデータ) (2024-10-16T13:19:32Z) - Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AIは、サイバースペースと物理空間のギャップを埋める、急速に進歩する分野だ。
VEANETでは、組み込まれたAIツインが車載AIアシスタントとして機能し、自律運転をサポートするさまざまなタスクを実行する。
論文 参考訳(メタデータ) (2024-10-02T02:20:42Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Comprehensive Autonomous Vehicle Optimal Routing With Dynamic Heuristics [0.0]
AVユーザエクスペリエンスを改善するために提案されたモデルは、複数の連結自動運転車のハイブリッドAVネットワークを使用する。
この問題の真の最適解決策は、AVネットワークにおける車両の自動誘導システムを開発することである。
結果は分析され、解の有効性を評価し、ギャップと将来の拡張を識別するために比較される。
論文 参考訳(メタデータ) (2024-03-17T18:21:56Z) - Stackelberg Driver Model for Continual Policy Improvement in
Scenario-Based Closed-Loop Autonomous Driving [5.765939495779461]
安全クリティカルなシナリオを合成するための効率的な手法のクラスとして、敵生成法が登場した。
Stackelberg Driver Model (SDM) を調整し、車両相互作用の階層的な性質を正確に特徴づける。
提案アルゴリズムは,特に高次元シナリオにおいて,いくつかのベースラインと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-25T15:47:07Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - A Cooperation-Aware Lane Change Method for Autonomous Vehicles [16.937363492078426]
本稿では,車両間の相互作用を利用した協調型車線変更手法を提案する。
まず,AVと他者間の協調の可能性を探るため,対話的な軌道予測手法を提案する。
次に,モデル予測制御(MPC)に基づく動作計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-26T04:45:45Z) - Multi-agent Reinforcement Learning for Cooperative Lane Changing of
Connected and Autonomous Vehicles in Mixed Traffic [16.858651125916133]
レーン変更は、混合および動的交通シナリオにおける自動運転車(AV)にとって大きな課題である。
本稿では,マルチエージェント強化学習(MARL)問題として,混在高速道路環境における複数のAVの車線変更決定を定式化する。
提案するMARLフレームワークは,効率,安全性,ドライバの快適性という点で,最先端のベンチマークを一貫して上回っている。
論文 参考訳(メタデータ) (2021-11-11T17:17:24Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。