論文の概要: KwaiAgents: Generalized Information-seeking Agent System with Large
Language Models
- arxiv url: http://arxiv.org/abs/2312.04889v3
- Date: Wed, 10 Jan 2024 09:44:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-11 16:40:26.727540
- Title: KwaiAgents: Generalized Information-seeking Agent System with Large
Language Models
- Title(参考訳): KwaiAgents:大規模言語モデルを用いた汎用情報探索エージェントシステム
- Authors: Haojie Pan, Zepeng Zhai, Hao Yuan, Yaojia Lv, Ruiji Fu, Ming Liu,
Zhongyuan Wang, Bing Qin
- Abstract要約: 人間は批判的思考、計画、リフレクション、世界と対話し解釈するための利用可能なツールの活用に優れています。
大規模言語モデル(LLM)の最近の進歩は、マシンが前述の人間のような能力を持っていることも示唆している。
LLMに基づく汎用情報検索システムであるKwaiAgentsを紹介する。
- 参考スコア(独自算出の注目度): 33.59597020276034
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Driven by curiosity, humans have continually sought to explore and understand
the world around them, leading to the invention of various tools to satiate
this inquisitiveness. Despite not having the capacity to process and memorize
vast amounts of information in their brains, humans excel in critical thinking,
planning, reflection, and harnessing available tools to interact with and
interpret the world, enabling them to find answers efficiently. The recent
advancements in large language models (LLMs) suggest that machines might also
possess the aforementioned human-like capabilities, allowing them to exhibit
powerful abilities even with a constrained parameter count. In this paper, we
introduce KwaiAgents, a generalized information-seeking agent system based on
LLMs. Within KwaiAgents, we propose an agent system that employs LLMs as its
cognitive core, which is capable of understanding a user's query, behavior
guidelines, and referencing external documents. The agent can also update and
retrieve information from its internal memory, plan and execute actions using a
time-aware search-browse toolkit, and ultimately provide a comprehensive
response. We further investigate the system's performance when powered by LLMs
less advanced than GPT-4, and introduce the Meta-Agent Tuning (MAT) framework,
designed to ensure even an open-sourced 7B or 13B model performs well among
many agent systems. We exploit both benchmark and human evaluations to
systematically validate these capabilities. Extensive experiments show the
superiority of our agent system compared to other autonomous agents and
highlight the enhanced generalized agent-abilities of our fine-tuned LLMs.
- Abstract(参考訳): 好奇心に駆られ、人間は周囲の世界を探究し、理解し続け、この不審さを満足させる様々な道具が発明された。
大量の情報を脳に処理し記憶する能力がないにもかかわらず、人間は批判的な思考、計画、リフレクション、利用可能なツールを使って世界と対話し、解釈し、効率的に答えを見つけることができる。
近年の大規模言語モデル(LLM)の進歩は、マシンが前述の人間のような能力を持つ可能性を示し、制約されたパラメータ数でも強力な能力を発揮することを示唆している。
本稿では,llmsに基づく汎用情報検索エージェントシステムであるkwaiagentsについて紹介する。
kwaiagents内では、llmsを認知コアとして使用し、ユーザのクエリや行動ガイドラインを理解し、外部ドキュメントを参照可能なエージェントシステムを提案する。
エージェントは、内部メモリから情報を更新し、取得し、タイムアウェアな検索・バッファーツールキットを使用してアクションを計画し、実行し、最終的に包括的な応答を提供する。
さらに, GPT-4 よりも低出力の LLM を用いた場合のシステム性能について検討し, オープンソース 7B や 13B モデルでさえ,多くのエージェントシステムで良好に動作するように設計された Meta-Agent Tuning (MAT) フレームワークを導入する。
我々は、ベンチマークとヒューマン評価の両方を利用して、これらの能力を体系的に検証する。
広範囲な実験により、他の自律エージェントと比較してエージェントシステムの優位性が示され、微調整LDMの汎用エージェント能力の向上が強調された。
関連論文リスト
- A Taxonomy of AgentOps for Enabling Observability of Foundation Model based Agents [12.49728300301026]
LLMはさまざまなダウンストリームタスクの成長を加速させ、AI自動化の需要が増加した。
AIエージェントシステムは、より複雑なタスクに取り組み、進化するにつれて、より幅広い利害関係者が関与する。
これらのシステムは、AIエージェント、RAGパイプライン、プロンプト管理、エージェント機能、可観測性機能など、複数のコンポーネントを統合する。
開発から運用ライフサイクル全体にわたって可観測性とトレーサビリティを確保するために、AgentOpsプラットフォームの設計に移行することが不可欠です。
論文 参考訳(メタデータ) (2024-11-08T02:31:03Z) - Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
我々は、人間の指示なしにタスクを予測および開始できるプロアクティブエージェントを開発するという課題に取り組む。
まず,実世界の人的活動を収集し,前向きなタスク予測を生成する。
これらの予測は、ヒトのアノテータによって受け入れられるか拒否されるかのどちらかとしてラベル付けされる。
ラベル付きデータは、人間の判断をシミュレートする報酬モデルをトレーニングするために使用される。
論文 参考訳(メタデータ) (2024-10-16T08:24:09Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-06T10:49:40Z) - Automated Design of Agentic Systems [5.404186221463082]
我々は,エージェントシステムの設計を自動生成することを目的とした,エージェントシステムの自動設計という新しい研究領域を定式化する。
我々のアルゴリズムは、最先端の手作りエージェントを大幅に上回る斬新なデザインでエージェントを段階的に発明できることが示される。
論文 参考訳(メタデータ) (2024-08-15T21:59:23Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
大規模言語モデル(LLM)はそのようなエージェントを構築するための有望な基盤と考えられている。
我々は、自己進化能力を備えた一般機能 LLM ベースのエージェントを構築するための第一歩を踏み出す。
我々はAgentGymを提案する。AgentGymは、幅広い、リアルタイム、ユニフォーマット、並行エージェント探索のための様々な環境とタスクを特徴とする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-06-06T15:15:41Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents [54.09074527006576]
大規模言語モデル(LLM)は複雑な推論タスクにおいて大きな可能性を証明していますが、より高度な課題に取り組むには不十分です。
この不適切さは、主に言語エージェントのアクション知識が組み込まれていないことに起因する。
我々は、明示的な行動知識を取り入れることで、LLMの計画能力を高めるために設計された新しいアプローチであるKnowAgentを紹介する。
論文 参考訳(メタデータ) (2024-03-05T16:39:12Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
本稿では, シングルエージェントおよびマルチエージェントシステムにおける知的エージェントの詳細な概要を提供するため, 現在の研究状況について調査する。
定義、研究フレームワーク、その構成、認知と計画方法、ツール利用、環境フィードバックに対する反応などの基礎的な構成要素を網羅する。
我々は、AIと自然言語処理の進化の展望を考慮し、LLMベースのエージェントの展望を思い浮かべて結論付ける。
論文 参考訳(メタデータ) (2024-01-07T09:08:24Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。