論文の概要: A Taxonomy of AgentOps for Enabling Observability of Foundation Model based Agents
- arxiv url: http://arxiv.org/abs/2411.05285v1
- Date: Fri, 08 Nov 2024 02:31:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:55:58.481651
- Title: A Taxonomy of AgentOps for Enabling Observability of Foundation Model based Agents
- Title(参考訳): 基礎モデルに基づくエージェントの可観測性向上のためのエージェントOpsの分類
- Authors: Liming Dong, Qinghua Lu, Liming Zhu,
- Abstract要約: LLMはさまざまなダウンストリームタスクの成長を加速させ、AI自動化の需要が増加した。
AIエージェントシステムは、より複雑なタスクに取り組み、進化するにつれて、より幅広い利害関係者が関与する。
これらのシステムは、AIエージェント、RAGパイプライン、プロンプト管理、エージェント機能、可観測性機能など、複数のコンポーネントを統合する。
開発から運用ライフサイクル全体にわたって可観測性とトレーサビリティを確保するために、AgentOpsプラットフォームの設計に移行することが不可欠です。
- 参考スコア(独自算出の注目度): 12.49728300301026
- License:
- Abstract: The ever-improving quality of LLMs has fueled the growth of a diverse range of downstream tasks, leading to an increased demand for AI automation and a burgeoning interest in developing foundation model (FM)-based autonomous agents. As AI agent systems tackle more complex tasks and evolve, they involve a wider range of stakeholders, including agent users, agentic system developers and deployers, and AI model developers. These systems also integrate multiple components such as AI agent workflows, RAG pipelines, prompt management, agent capabilities, and observability features. In this case, obtaining reliable outputs and answers from these agents remains challenging, necessitating a dependable execution process and end-to-end observability solutions. To build reliable AI agents and LLM applications, it is essential to shift towards designing AgentOps platforms that ensure observability and traceability across the entire development-to-production life-cycle. To this end, we conducted a rapid review and identified relevant AgentOps tools from the agentic ecosystem. Based on this review, we provide an overview of the essential features of AgentOps and propose a comprehensive overview of observability data/traceable artifacts across the agent production life-cycle. Our findings provide a systematic overview of the current AgentOps landscape, emphasizing the critical role of observability/traceability in enhancing the reliability of autonomous agent systems.
- Abstract(参考訳): LLMの継続的な改善によって、さまざまなダウンストリームタスクが成長し、AI自動化の需要が高まり、ファンデーションモデル(FM)ベースの自律エージェントの開発への関心が高まっている。
AIエージェントシステムは、より複雑なタスクに取り組み、進化するにつれて、エージェントユーザ、エージェントシステム開発者とデプロイ者、AIモデル開発者など、幅広い利害関係者が関与する。
これらのシステムは、AIエージェントワークフロー、RAGパイプライン、プロンプト管理、エージェント機能、可観測性機能など、複数のコンポーネントを統合する。
この場合、信頼できるアウトプットとこれらのエージェントからの回答を得るためには、信頼性の高い実行プロセスとエンドツーエンドの可観測性ソリューションが必要である。
信頼性の高いAIエージェントとLLMアプリケーションを構築するためには、開発から運用までのライフサイクル全体にわたって可観測性とトレーサビリティを保証するAgentOpsプラットフォームの設計に移行することが不可欠である。
この目的のために、エージェントエコシステムから関連するAgentOpsツールを迅速にレビューし、特定しました。
本稿では,AgentOpsの本質的な機能の概要と,エージェント生産ライフサイクル全体にわたる可観測性データ/追跡可能なアーティファクトの概要を提案する。
本稿では,自律型エージェントシステムの信頼性向上における可観測性・追跡性の重要性を強調し,現在のAgentOpsの展望を体系的に概観する。
関連論文リスト
- Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
我々は、人間の指示なしにタスクを予測および開始できるプロアクティブエージェントを開発するという課題に取り組む。
まず,実世界の人的活動を収集し,前向きなタスク予測を生成する。
これらの予測は、ヒトのアノテータによって受け入れられるか拒否されるかのどちらかとしてラベル付けされる。
ラベル付きデータは、人間の判断をシミュレートする報酬モデルをトレーニングするために使用される。
論文 参考訳(メタデータ) (2024-10-16T08:24:09Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
本稿ではエージェント・アズ・ア・ジャッジ(Agent-as-a-Judge)フレームワークを紹介し,エージェント・システムを用いてエージェント・システムの評価を行う。
これはLLM-as-a-Judgeフレームワークの有機的拡張であり、タスク解決プロセス全体の中間フィードバックを可能にするエージェント的特徴を取り入れている。
55のリアルな自動化AI開発タスクのベンチマークであるDevAIを紹介します。
論文 参考訳(メタデータ) (2024-10-14T17:57:02Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-06T10:49:40Z) - LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
LLM-Agent-UMF(LLM-Agent-UMF)に基づく新しいエージェント統一モデリングフレームワークを提案する。
我々のフレームワークはLLMエージェントの異なるコンポーネントを区別し、LLMとツールを新しい要素であるコアエージェントから分離する。
我々は,13の最先端エージェントに適用し,それらの機能との整合性を実証することによって,我々の枠組みを評価する。
論文 参考訳(メタデータ) (2024-09-17T17:54:17Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgentは進化的アルゴリズムによって専門家エージェントをマルチエージェントシステムに自動的に拡張する汎用的な手法である。
EvoAgentは複数の専門家エージェントを自動生成し,LLMエージェントのタスク解決能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-20T11:49:23Z) - KwaiAgents: Generalized Information-seeking Agent System with Large
Language Models [33.59597020276034]
人間は批判的思考、計画、リフレクション、世界と対話し解釈するための利用可能なツールの活用に優れています。
大規模言語モデル(LLM)の最近の進歩は、マシンが前述の人間のような能力を持っていることも示唆している。
LLMに基づく汎用情報検索システムであるKwaiAgentsを紹介する。
論文 参考訳(メタデータ) (2023-12-08T08:11:11Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。