Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
- URL: http://arxiv.org/abs/2312.05153v2
- Date: Mon, 22 Jul 2024 17:37:44 GMT
- Title: Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
- Authors: Philipp Reiser, Javier Enrique Aguilar, Anneli Guthke, Paul-Christian Bürkner,
- Abstract summary: Surrogate models are conceptual approximations for more complex simulation models.
quantifying and propagating the uncertainty of surrogates is usually limited to special analytic cases.
We present three methods for Bayesian inference with surrogate models given measurement data.
- Score: 1.1383507019490222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Surrogate models are statistical or conceptual approximations for more complex simulation models. In this context, it is crucial to propagate the uncertainty induced by limited simulation budget and surrogate approximation error to predictions, inference, and subsequent decision-relevant quantities. However, quantifying and then propagating the uncertainty of surrogates is usually limited to special analytic cases or is otherwise computationally very expensive. In this paper, we propose a framework enabling a scalable, Bayesian approach to surrogate modeling with thorough uncertainty quantification, propagation, and validation. Specifically, we present three methods for Bayesian inference with surrogate models given measurement data. This is a task where the propagation of surrogate uncertainty is especially relevant, because failing to account for it may lead to biased and/or overconfident estimates of the parameters of interest. We showcase our approach in three detailed case studies for linear and nonlinear real-world modeling scenarios. Uncertainty propagation in surrogate models enables more reliable and safe approximation of expensive simulators and will therefore be useful in various fields of applications.
Related papers
- Uncertainty Quantification of Surrogate Models using Conformal Prediction [7.445864392018774]
We formalise a conformal prediction framework that satisfies predictions in a model-agnostic manner, requiring near-zero computational costs.
The paper looks at providing statistically valid error bars for deterministic models, as well as crafting guarantees to the error bars of probabilistic models.
arXiv Detail & Related papers (2024-08-19T10:46:19Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Deep Evidential Learning for Bayesian Quantile Regression [3.6294895527930504]
It is desirable to have accurate uncertainty estimation from a single deterministic forward-pass model.
This paper proposes a deep Bayesian quantile regression model that can estimate the quantiles of a continuous target distribution without the Gaussian assumption.
arXiv Detail & Related papers (2023-08-21T11:42:16Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Model-free generalized fiducial inference [0.0]
I propose and develop ideas for a model-free statistical framework for imprecise probabilistic prediction inference.
This framework facilitates uncertainty quantification in the form of prediction sets that offer finite sample control of type 1 errors.
I consider the theoretical and empirical properties of a precise probabilistic approximation to the model-free imprecise framework.
arXiv Detail & Related papers (2023-07-24T01:58:48Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Black-box Bayesian inference for economic agent-based models [0.0]
We investigate the efficacy of two classes of black-box approximate Bayesian inference methods.
We demonstrate that neural network based black-box methods provide state of the art parameter inference for economic simulation models.
arXiv Detail & Related papers (2022-02-01T18:16:12Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Aleatoric uncertainty for Errors-in-Variables models in deep regression [0.48733623015338234]
We show how the concept of Errors-in-Variables can be used in Bayesian deep regression.
We discuss the approach along various simulated and real examples.
arXiv Detail & Related papers (2021-05-19T12:37:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.