論文の概要: A Review of Machine Learning Methods Applied to Video Analysis Systems
- arxiv url: http://arxiv.org/abs/2312.05352v1
- Date: Fri, 8 Dec 2023 20:24:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-12 21:21:40.161376
- Title: A Review of Machine Learning Methods Applied to Video Analysis Systems
- Title(参考訳): 映像解析システムに適用した機械学習手法のレビュー
- Authors: Marios S. Pattichis, Venkatesh Jatla, Alvaro E. Ullao Cerna
- Abstract要約: 本稿では,ビデオ解析のための機械学習技術の開発について調査する。
本稿では,ビデオ分析における自己教師型学習,半教師型学習,アクティブ学習,ゼロショット学習の開発の概要について述べる。
- 参考スコア(独自算出の注目度): 3.518774226658318
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper provides a survey of the development of machine-learning techniques
for video analysis. The survey provides a summary of the most popular deep
learning methods used for human activity recognition. We discuss how popular
architectures perform on standard datasets and highlight the differences from
real-life datasets dominated by multiple activities performed by multiple
participants over long periods. For real-life datasets, we describe the use of
low-parameter models (with 200X or 1,000X fewer parameters) that are trained to
detect a single activity after the relevant objects have been successfully
detected. Our survey then turns to a summary of machine learning methods that
are specifically developed for working with a small number of labeled video
samples. Our goal here is to describe modern techniques that are specifically
designed so as to minimize the amount of ground truth that is needed for
training and testing video analysis systems. We provide summaries of the
development of self-supervised learning, semi-supervised learning, active
learning, and zero-shot learning for applications in video analysis. For each
method, we provide representative examples.
- Abstract(参考訳): 本稿では,ビデオ解析のための機械学習技術の開発に関する調査を行う。
この調査は、人間のアクティビティ認識に使用される最も人気のあるディープラーニング手法の概要を提供する。
一般的なアーキテクチャが標準データセット上でどのように機能するかを議論し、複数の参加者が長期間にわたって行う複数のアクティビティに支配される実生活データセットの違いを強調する。
実生活データセットでは、関連するオブジェクトが検出された後に単一のアクティビティを検出するように訓練された低パラメータモデル(200倍または1000倍のパラメータ)の使用について述べる。
その結果、少数のラベル付きビデオサンプルを扱うために特別に開発された機械学習手法の概要が明らかになった。
ここでの目標は、ビデオ分析システムのトレーニングとテストに必要な基礎的真実の量を最小限に抑えるように特別に設計されたモダンな技術を記述することです。
本稿では,自己教師付き学習,半教師付き学習,アクティブラーニング,ゼロショット学習の開発の概要をビデオ解析に応用する。
各方法に対して,代表的な例を示す。
関連論文リスト
- Any-point Trajectory Modeling for Policy Learning [64.23861308947852]
我々は、ビデオフレーム内の任意の点の将来の軌跡を予測するために、ATM(Any-point Trajectory Modeling)を導入する。
ATMは、強力なビデオ事前トレーニングベースラインを平均80%上回っている。
本研究では,人間の動画やビデオからの操作スキルを,異なるロボット形態から効果的に伝達する学習方法を示す。
論文 参考訳(メタデータ) (2023-12-28T23:34:43Z) - A Large-Scale Analysis on Self-Supervised Video Representation Learning [15.205738030787673]
本研究では,1)データセットのサイズ,2)複雑性,3)データ分布,4)データノイズ,5)機能解析の5つの側面について検討する。
この研究から得られた興味深い洞察は、事前学習とターゲットデータセット、プレテキストタスク、モデルアーキテクチャの様々な特性にまたがる。
本稿では,限られたトレーニングデータを必要とするアプローチを提案し,従来の10倍の事前学習データを用いた最先端のアプローチより優れた手法を提案する。
論文 参考訳(メタデータ) (2023-06-09T16:27:14Z) - Lifelong Ensemble Learning based on Multiple Representations for
Few-Shot Object Recognition [6.282068591820947]
本稿では,複数表現に基づく一生涯のアンサンブル学習手法を提案する。
生涯学習を容易にするため、各アプローチは、オブジェクト情報を即座に保存して検索するメモリユニットを備える。
提案手法の有効性を,オフラインおよびオープンエンドシナリオで評価するために,幅広い実験を行った。
論文 参考訳(メタデータ) (2022-05-04T10:29:10Z) - Continuous Human Action Recognition for Human-Machine Interaction: A
Review [39.593687054839265]
入力ビデオ内のアクションを認識することは難しいが、リアルタイムの人間と機械のインタラクションを必要とするアプリケーションに必要なタスクである。
我々は,ほとんどの最先端手法で使用される特徴抽出と学習戦略について述べる。
実世界のシナリオへのそのようなモデルの適用について検討し、いくつかの制限と研究の方向性について論じる。
論文 参考訳(メタデータ) (2022-02-26T09:25:44Z) - Self-Supervised Visual Representation Learning Using Lightweight
Architectures [0.0]
自己教師付き学習では、マシンによってアノテーションが生成されるデータセットを使用して、プレテキストタスクを解決するためにモデルが訓練される。
我々は、画像データから特徴を抽出する最も顕著な前文タスクを批判的に検討する。
我々は、他の全てのパラメータを均一に保ちながら、様々な自己監督技術の性能について研究する。
論文 参考訳(メタデータ) (2021-10-21T14:13:10Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
本稿では,少数のトレーニング画像にのみ手動アノテーションを応用して,効果的なサルエント物体検出モデルを学習することを提案する。
我々は,このタスクを,少額の有能な物体検出とみなし,少数のコストの学習シナリオを促進するために,APL(Adversarialpaced Learning)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-05T14:15:49Z) - Curriculum Learning: A Survey [65.31516318260759]
カリキュラム学習戦略は、機械学習のあらゆる分野で成功している。
我々は,様々な分類基準を考慮して,カリキュラム学習アプローチの分類を手作業で構築する。
集約型クラスタリングアルゴリズムを用いて,カリキュラム学習手法の階層木を構築する。
論文 参考訳(メタデータ) (2021-01-25T20:08:32Z) - Visual Imitation Made Easy [102.36509665008732]
本稿では,ロボットへのデータ転送を容易にしながら,データ収集プロセスを単純化する,模倣のための代替インターフェースを提案する。
我々は、データ収集装置やロボットのエンドエフェクターとして、市販のリーチ・グラブラー補助具を使用する。
我々は,非包括的プッシュと包括的積み重ねという2つの課題について実験的に評価した。
論文 参考訳(メタデータ) (2020-08-11T17:58:50Z) - Bayesian active learning for production, a systematic study and a
reusable library [85.32971950095742]
本稿では,現在のアクティブラーニング技術の主な欠点について分析する。
実世界のデータセットの最も一般的な課題が深層能動学習プロセスに与える影響について,系統的研究を行った。
部分的不確実性サンプリングやより大きいクエリサイズといった,アクティブな学習ループを高速化する2つの手法を導出する。
論文 参考訳(メタデータ) (2020-06-17T14:51:11Z) - A System for Real-Time Interactive Analysis of Deep Learning Training [66.06880335222529]
現在利用可能なシステムは、トレーニングプロセスが始まる前に指定しなければならないログデータのみを監視することに限定されている。
本稿では,リアルタイム情報を生成するライブプロセス上で対話型クエリを実行可能にするシステムを提案する。
論文 参考訳(メタデータ) (2020-01-05T11:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。