A Unified Multi-Phase CT Synthesis and Classification Framework for
Kidney Cancer Diagnosis with Incomplete Data
- URL: http://arxiv.org/abs/2312.05548v1
- Date: Sat, 9 Dec 2023 11:34:14 GMT
- Title: A Unified Multi-Phase CT Synthesis and Classification Framework for
Kidney Cancer Diagnosis with Incomplete Data
- Authors: Kwang-Hyun Uhm, Seung-Won Jung, Moon Hyung Choi, Sung-Hoo Hong,
Sung-Jea Ko
- Abstract summary: We propose a unified framework for kidney cancer diagnosis with incomplete multi-phase CT.
It simultaneously recovers missing CT images and classifies cancer subtypes using the completed set of images.
The proposed framework is based on fully 3D convolutional neural networks.
- Score: 18.15801599933636
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-phase CT is widely adopted for the diagnosis of kidney cancer due to
the complementary information among phases. However, the complete set of
multi-phase CT is often not available in practical clinical applications. In
recent years, there have been some studies to generate the missing modality
image from the available data. Nevertheless, the generated images are not
guaranteed to be effective for the diagnosis task. In this paper, we propose a
unified framework for kidney cancer diagnosis with incomplete multi-phase CT,
which simultaneously recovers missing CT images and classifies cancer subtypes
using the completed set of images. The advantage of our framework is that it
encourages a synthesis model to explicitly learn to generate missing CT phases
that are helpful for classifying cancer subtypes. We further incorporate lesion
segmentation network into our framework to exploit lesion-level features for
effective cancer classification in the whole CT volumes. The proposed framework
is based on fully 3D convolutional neural networks to jointly optimize both
synthesis and classification of 3D CT volumes. Extensive experiments on both
in-house and external datasets demonstrate the effectiveness of our framework
for the diagnosis with incomplete data compared with state-of-the-art
baselines. In particular, cancer subtype classification using the completed CT
data by our method achieves higher performance than the classification using
the given incomplete data.
Related papers
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
We propose a novel deep learning network designed to accurately classify lung cancer subtype with multi-dimensional and multi-modality images.
The strength of the proposed model lies in its ability to dynamically process both paired CT-pathological image sets and independent CT image sets.
We also develop a contrastive constraint module, which quantitatively maps the cross-modality associations through network training.
arXiv Detail & Related papers (2024-07-18T01:42:00Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
Cross-scale associations exist in the image patterns between the same case's CT images and its pathological images.
We propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on CT images.
arXiv Detail & Related papers (2023-08-09T02:04:05Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Segmentation of Lung Tumor from CT Images using Deep Supervision [0.8733639720576208]
Lung cancer is a leading cause of death in most countries of the world.
This paper approaches lung tumor segmentation by applying two-dimensional discrete wavelet transform (DWT) on the LOTUS dataset.
arXiv Detail & Related papers (2021-11-17T17:50:18Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans.
Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran.
Our empirical results show that CyTran outperforms all competing methods.
arXiv Detail & Related papers (2021-10-12T23:25:03Z) - Multitask 3D CBCT-to-CT Translation and Organs-at-Risk Segmentation
Using Physics-Based Data Augmentation [4.3971310109651665]
In current clinical practice, noisy and artifact-ridden weekly cone-beam computed tomography (CBCT) images are only used for patient setup during radiotherapy.
Treatment planning is done once at the beginning of the treatment using high-quality planning CT (pCT) images and manual contours for organs-at-risk (OARs) structures.
If the quality of the weekly CBCT images can be improved while simultaneously segmenting OAR structures, this can provide critical information for adapting radiotherapy mid-treatment and for deriving biomarkers for treatment response.
arXiv Detail & Related papers (2021-03-09T19:51:44Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - A Novel and Efficient Tumor Detection Framework for Pancreatic Cancer
via CT Images [21.627818410241552]
A novel and efficient pancreatic tumor detection framework is proposed in this paper.
The contribution of the proposed method mainly consists of three components: Augmented Feature Pyramid networks, Self-adaptive Feature Fusion and a Dependencies Computation Module.
Experimental results achieve competitive performance in detection with the AUC of 0.9455, which outperforms other state-of-the-art methods to our best of knowledge.
arXiv Detail & Related papers (2020-02-11T15:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.