All You Need is pi: Quantum Computing with Hermitian Gates
- URL: http://arxiv.org/abs/2402.12356v2
- Date: Thu, 20 Feb 2025 13:42:42 GMT
- Title: All You Need is pi: Quantum Computing with Hermitian Gates
- Authors: Ben Zindorf, Sougato Bose,
- Abstract summary: We show that any single-qubit operator may be implemented as two Hermitian gates, and thus a purely Hermitian universal set is possible.
This implementation can be used to prepare high fidelity single-qubit states in the presence of amplitude errors.
We show that a gate set comprised of $pi$ rotations about two fixed axes, along with the CNOT gate, is universal for quantum computation.
- Score: 0.0
- License:
- Abstract: Universal gate sets for quantum computation, when single and two qubit operations are accessible, include both Hermitian and non-Hermitian gates. Here we show that any single-qubit operator may be implemented as two Hermitian gates, and thus a purely Hermitian universal set is possible. This implementation can be used to prepare high fidelity single-qubit states in the presence of amplitude errors, and helps to achieve a high fidelity single-qubit gate decomposition using four Hermitian gates. An implementational convenience can be that non-identity single-qubit Hermitian gates are equivalent to $\pi$ rotations up to a global phase. We show that a gate set comprised of $\pi$ rotations about two fixed axes, along with the CNOT gate, is universal for quantum computation. Moreover, we show that two $\pi$ rotations can transform the axis of any multi-controlled unitary, a special case being a single CNOT sufficing for any controlled $\pi$ rotation. These gates simplify the process of circuit compilation in view of their Hermitian nature. We exemplify by designing efficient circuits for a variety of controlled gates, and achieving a CNOT count reduction for the four-controlled Toffoli gate in LNN-restricted qubit connectivity.
Related papers
- Error-corrected Hadamard gate simulated at the circuit level [42.002147097239444]
We simulate the logical Hadamard gate in the surface code under a circuit-level noise model.
Our paper is the first to do this for a unitary gate on a quantum error-correction code.
arXiv Detail & Related papers (2023-12-18T19:00:00Z) - One Gate Scheme to Rule Them All: Introducing a Complex Yet Reduced Instruction Set for Quantum Computing [8.478982715648547]
Scheme for qubits with $XX+YY$ coupling realizes any two-qubit gate up to single-qubit gates.
We observe marked improvements across various applications, including generic $n$-qubit gate synthesis, quantum volume, and qubit routing.
arXiv Detail & Related papers (2023-12-09T19:30:31Z) - Quantum control landscape for generation of $H$ and $T$ gates in an open
qubit with both coherent and environmental drive [57.70351255180495]
An important problem in quantum computation is generation of single-qubit quantum gates such as Hadamard ($H$) and $pi/8$ ($T$)
Here we consider the problem of optimal generation of $H$ and $T$ gates using coherent control and the environment as a resource acting on the qubit via incoherent control.
arXiv Detail & Related papers (2023-09-05T09:05:27Z) - Cat-qubit-inspired gate on cos($2\theta$) qubits [77.34726150561087]
We introduce a single-qubit $Z$ gate inspired by the noise-bias preserving gate of the Kerr-cat qubit.
This scheme relies on a $pi$ rotation in phase space via a beamsplitter-like transformation between a qubit and ancilla qubit.
arXiv Detail & Related papers (2023-04-04T23:06:22Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Extensive characterization of a family of efficient three-qubit gates at
the coherence limit [0.4471952592011114]
We implement a three-qubit gate by simultaneously applying two-qubit operations.
We generate two classes of entangled states, the GHZ and W states, by applying the new gate only once.
We analyze the experimental and statistical errors on the fidelity of the gates and of the target states.
arXiv Detail & Related papers (2022-07-06T19:42:29Z) - Universal Parity Quantum Computing [0.0]
We show that logical controlled phase gate and $R_z$ rotations can be implemented in parity encoding with single-qubit operations.
We present a method to switch between different encoding variants via partial on-the-fly encoding and decoding.
arXiv Detail & Related papers (2022-05-19T12:21:23Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Approaching the theoretical limit in quantum gate decomposition [0.0]
We propose a novel numerical approach to decompose general quantum programs in terms of single- and two-qubit quantum gates with a $CNOT$ gate count.
Our approach is based on a sequential optimization of parameters related to the single-qubit rotation gates involved in a pre-designed quantum circuit used for the decomposition.
arXiv Detail & Related papers (2021-09-14T15:36:22Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Simple implementation of high fidelity controlled-$i$SWAP gates and
quantum circuit exponentiation of non-Hermitian gates [0.0]
The $i$swap gate is an entangling swapping gate where the qubits obtain a phase of $i$ if the state of the qubits is swapped.
We present a simple implementation of the controlled-$i$swap gate.
arXiv Detail & Related papers (2020-02-26T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.