Context Tuning for Retrieval Augmented Generation
- URL: http://arxiv.org/abs/2312.05708v1
- Date: Sat, 9 Dec 2023 23:33:16 GMT
- Title: Context Tuning for Retrieval Augmented Generation
- Authors: Raviteja Anantha, Tharun Bethi, Danil Vodianik, Srinivas Chappidi
- Abstract summary: We propose Context Tuning for RAG, which employs a smart context retrieval system to fetch relevant information.
Our empirical results demonstrate that context tuning significantly enhances semantic search.
We also show that our proposed lightweight model using Reciprocal Rank Fusion (RRF) withMART outperforms GPT-4 based retrieval.
- Score: 1.201626478128059
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have the remarkable ability to solve new tasks
with just a few examples, but they need access to the right tools. Retrieval
Augmented Generation (RAG) addresses this problem by retrieving a list of
relevant tools for a given task. However, RAG's tool retrieval step requires
all the required information to be explicitly present in the query. This is a
limitation, as semantic search, the widely adopted tool retrieval method, can
fail when the query is incomplete or lacks context. To address this limitation,
we propose Context Tuning for RAG, which employs a smart context retrieval
system to fetch relevant information that improves both tool retrieval and plan
generation. Our lightweight context retrieval model uses numerical,
categorical, and habitual usage signals to retrieve and rank context items. Our
empirical results demonstrate that context tuning significantly enhances
semantic search, achieving a 3.5-fold and 1.5-fold improvement in Recall@K for
context retrieval and tool retrieval tasks respectively, and resulting in an
11.6% increase in LLM-based planner accuracy. Additionally, we show that our
proposed lightweight model using Reciprocal Rank Fusion (RRF) with LambdaMART
outperforms GPT-4 based retrieval. Moreover, we observe context augmentation at
plan generation, even after tool retrieval, reduces hallucination.
Related papers
- Sufficient Context: A New Lens on Retrieval Augmented Generation Systems [19.238772793096473]
Augmenting LLMs with context leads to improved performance across many applications.
We develop a new notion of sufficient context, along with a way to classify instances that have enough information to answer the query.
We find that proprietary LLMs excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not.
arXiv Detail & Related papers (2024-11-09T02:13:14Z) - Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA [51.3033125256716]
We model the subgraph retrieval task as a conditional generation task handled by small language models.
Our base generative subgraph retrieval model, consisting of only 220M parameters, competitive retrieval performance compared to state-of-the-art models.
Our largest 3B model, when plugged with an LLM reader, sets new SOTA end-to-end performance on both the WebQSP and CWQ benchmarks.
arXiv Detail & Related papers (2024-10-08T15:22:36Z) - Data-Efficient Massive Tool Retrieval: A Reinforcement Learning Approach for Query-Tool Alignment with Language Models [28.67532617021655]
Large language models (LLMs) integrated with external tools and APIs have successfully addressed complex tasks by using in-context learning or fine-tuning.
Despite this progress, the vast scale of tool retrieval remains challenging due to stringent input length constraints.
We propose a pre-retrieval strategy from an extensive repository, effectively framing the problem as the massive tool retrieval (MTR) task.
arXiv Detail & Related papers (2024-10-04T07:58:05Z) - Re-Invoke: Tool Invocation Rewriting for Zero-Shot Tool Retrieval [47.81307125613145]
Re-Invoke is an unsupervised tool retrieval method designed to scale effectively to large toolsets without training.
We employ a novel multi-view similarity ranking strategy based on intents to pinpoint the most relevant tools for each query.
Our evaluation demonstrates that Re-Invoke significantly outperforms state-of-the-art alternatives in both single-tool and multi-tool scenarios.
arXiv Detail & Related papers (2024-08-03T22:49:27Z) - Optimizing Query Generation for Enhanced Document Retrieval in RAG [53.10369742545479]
Large Language Models (LLMs) excel in various language tasks but they often generate incorrect information.
Retrieval-Augmented Generation (RAG) aims to mitigate this by using document retrieval for accurate responses.
arXiv Detail & Related papers (2024-07-17T05:50:32Z) - Optimization of Retrieval-Augmented Generation Context with Outlier Detection [0.0]
We focus on methods to reduce the size and improve the quality of the prompt context required for question-answering systems.
Our goal is to select the most semantically relevant documents, treating the discarded ones as outliers.
It was found that the greatest improvements were achieved with increasing complexity of the questions and answers.
arXiv Detail & Related papers (2024-07-01T15:53:29Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
Large Language Models (LLMs) exhibit remarkable capabilities but are prone to generating inaccurate or hallucinatory responses.
This limitation stems from their reliance on vast pretraining datasets, making them susceptible to errors in unseen scenarios.
Retrieval-Augmented Generation (RAG) addresses this by incorporating external, relevant documents into the response generation process.
arXiv Detail & Related papers (2024-03-31T08:58:54Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented generation (RAG) relies heavily on relevance of retrieved documents, raising concerns about how the model behaves if retrieval goes wrong.
We propose the Corrective Retrieval Augmented Generation (CRAG) to improve the robustness of generation.
CRAG is plug-and-play and can be seamlessly coupled with various RAG-based approaches.
arXiv Detail & Related papers (2024-01-29T04:36:39Z) - Dense X Retrieval: What Retrieval Granularity Should We Use? [56.90827473115201]
Often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence.
We introduce a novel retrieval unit, proposition, for dense retrieval.
Experiments reveal that indexing a corpus by fine-grained units such as propositions significantly outperforms passage-level units in retrieval tasks.
arXiv Detail & Related papers (2023-12-11T18:57:35Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
Generation-Augmented Retrieval (GAR) for answering open-domain questions.
We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy.
GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader.
arXiv Detail & Related papers (2020-09-17T23:08:01Z) - Query Understanding via Intent Description Generation [75.64800976586771]
We propose a novel Query-to-Intent-Description (Q2ID) task for query understanding.
Unlike existing ranking tasks which leverage the query and its description to compute the relevance of documents, Q2ID is a reverse task which aims to generate a natural language intent description.
We demonstrate the effectiveness of our model by comparing with several state-of-the-art generation models on the Q2ID task.
arXiv Detail & Related papers (2020-08-25T08:56:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.