論文の概要: Enhancing Generalization and Scalability for Multi-Objective Optimization with Population Pre-Training
- arxiv url: http://arxiv.org/abs/2312.06125v3
- Date: Fri, 17 Oct 2025 09:30:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 20:17:34.283261
- Title: Enhancing Generalization and Scalability for Multi-Objective Optimization with Population Pre-Training
- Title(参考訳): 人口事前学習による多目的最適化のための一般化とスケーラビリティの強化
- Authors: Haokai Hong, Liang Feng, Min Jiang, Kay Chen Tan,
- Abstract要約: 多目的最適化問題(MOP)は、競合する目的の同時最適化を必要とする。
本稿では,過去の最適化知識を活用して複雑なMOPを効率的に解くPopulation Pre-trained Model (PPM)を提案する。
提案手法は, 最大5000次元の下流最適化タスクに対して, トレーニングスケールの5倍, 先行作業の200倍の精度で頑健な一般化を実現する。
- 参考スコア(独自算出の注目度): 26.23887572937711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-objective optimization problems (MOPs) require the simultaneous optimization of conflicting objectives. Real-world MOPs often exhibit complex characteristics, including high-dimensional decision spaces, many objectives, or computationally expensive evaluations. While population-based evolutionary computation has shown promise in addressing diverse MOPs through problem-specific adaptations, existing approaches frequently lack generalizability across distinct problem classes. Inspired by pre-training paradigms in machine learning, we propose a Population Pre-trained Model (PPM) that leverages historical optimization knowledge to solve complex MOPs within a unified framework efficiently. PPM models evolutionary patterns via population modeling, addressing two key challenges: (1) handling diverse decision spaces across problems and (2) capturing the interdependency between objective and decision spaces during evolution. To this end, we develop a population transformer architecture that embeds decision spaces of varying scales into a common latent space, enabling knowledge transfer across diverse problems. Furthermore, our architecture integrates objective-space features through objective fusion to enhance population prediction accuracy for complex MOPs. Our approach achieves robust generalization to downstream optimization tasks with up to 5,000 dimensions--five times the training scale and 200 times greater than prior work. Extensive evaluations on standardized benchmarks and out-of-training real-world applications demonstrate the consistent superiority of our method over state-of-the-art algorithms tailored to specific problem classes, improving the performance and generalization of evolutionary computation in solving MOPs.
- Abstract(参考訳): 多目的最適化問題(MOP)は、競合する目的の同時最適化を必要とする。
現実世界のMOPは、高次元決定空間、多くの目的、計算に高価な評価など、複雑な特性を示すことが多い。
集団ベースの進化的計算は、問題固有の適応を通して様々なMOPに対処する上で有望であるが、既存のアプローチでは、異なる問題クラスにまたがる一般化性に欠けることが多い。
機械学習における事前学習のパラダイムに触発されて、歴史的最適化知識を活用し、統合されたフレームワーク内で複雑なMOPを効率的に解決するPPM(Population Pre-trained Model)を提案する。
PPMは、人口モデルを用いて進化パターンをモデル化し、(1)問題全体にわたる多様な決定空間を扱うこと、(2)進化中の目的空間と決定空間の相互依存を捉えること、の2つの主要な課題に対処する。
この目的のために、様々なスケールの意思決定空間を共通の潜在空間に埋め込んだ集団トランスフォーマーアーキテクチャを開発し、多様な問題にまたがる知識伝達を可能にする。
さらに,複雑なMOPの個体群予測精度を高めるために,客観的な融合による空間的特徴を統合した。
提案手法は, 最大5000次元の下流最適化タスクに対して, トレーニングスケールの5倍, 先行作業の200倍の精度で頑健な一般化を実現する。
標準化されたベンチマークとトレーニング外の実世界のアプリケーションに対する広範囲な評価は、特定の問題クラスに合わせた最先端のアルゴリズムよりも、我々の手法が一貫した優位性を示し、MOPの解法における進化的計算の性能と一般化を改善した。
関連論文リスト
- MOANA: Multi-Objective Ant Nesting Algorithm for Optimization Problems [21.80971564725773]
Multi-Objective Ant Nesting Algorithm (MOANA)は、Ant Nesting Evolutionary Algorithm (ANA)の新たな拡張である。
MOANAは、多目的シナリオにおけるスケーラビリティと多様性を改善することによって、従来の進化的アルゴリズムの重要な制限に対処する。
MOANAの溶接ビーム設計のような実世界のエンジニアリング最適化への適用性は、幅広い最適解を生成する能力を示している。
論文 参考訳(メタデータ) (2024-11-08T18:31:53Z) - EmoDM: A Diffusion Model for Evolutionary Multi-objective Optimization [22.374325061635112]
この研究は、EmoDMと呼ばれる進化的多目的探索を学習できる拡散モデルを提案する。
EmoDMは、新たなMOPに対して、さらなる進化的な探索をすることなく、その逆拡散によって、一組の非支配的なソリューションを生成することができる。
実験により,探索性能と計算効率の両面から,EmoDMの競合性を示す。
論文 参考訳(メタデータ) (2024-01-29T07:41:44Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
深層生成モデルは、生命科学における逆問題に対する一般的な機械学習ベースのアプローチとして登場した。
これらの問題は、データ分布の学習に加えて、興味のある複数の特性を満たす新しい設計をサンプリングする必要があることが多い。
論文 参考訳(メタデータ) (2022-10-19T19:04:45Z) - A Survey on Learnable Evolutionary Algorithms for Scalable
Multiobjective Optimization [0.0]
多目的進化アルゴリズム(MOEA)は、様々な多目的最適化問題(MOP)を解決するために採用されている。
しかし、これらの進歩的に改善されたMOEAは、必ずしも高度にスケーラブルで学習可能な問題解決戦略を備えていない。
異なるシナリオの下では、効果的に解決するための新しい強力なMOEAを設計する必要がある。
MOPをスケールアップするための機械学習技術で自身を操る学習可能なMOEAの研究は、進化計算の分野で広く注目を集めている。
論文 参考訳(メタデータ) (2022-06-23T08:16:01Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Permutation Invariant Policy Optimization for Mean-Field Multi-Agent
Reinforcement Learning: A Principled Approach [128.62787284435007]
本稿では,平均場近似ポリシ最適化(MF-PPO)アルゴリズムを提案する。
我々は,MF-PPOが収束のサブ線形速度で世界的最適政策を達成することを証明した。
特に、置換不変ニューラルアーキテクチャによって引き起こされる誘導バイアスは、MF-PPOが既存の競合より優れていることを示す。
論文 参考訳(メタデータ) (2021-05-18T04:35:41Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
マルコフ決定過程としてのAMRの新規な定式化を提案し,シミュレーションから直接改良政策を訓練するために深部強化学習を適用した。
これらのポリシーアーキテクチャのモデルサイズはメッシュサイズに依存しないため、任意に大きく複雑なシミュレーションにスケールします。
論文 参考訳(メタデータ) (2021-03-01T22:55:48Z) - Enhanced Innovized Repair Operator for Evolutionary Multi- and
Many-objective Optimization [5.885238773559015]
革新」とは、最適化問題においてパレート最適化(PO)ソリューションの一部または全部の共通関係を学習するタスクである。
近年の研究では、非支配的なソリューションの時系列配列もまた、問題の特徴を学習するのに使える有能なパターンを持っていることが示されている。
本稿では,Pareto-Optimal 集合に向けて,集団構成員を前進させるために必要な設計変数の修正を学習する機械学習(ML-)支援モデル手法を提案する。
論文 参考訳(メタデータ) (2020-11-21T10:29:15Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - Hybrid Adaptive Evolutionary Algorithm for Multi-objective Optimization [0.0]
本稿では、MoHAEAと呼ばれるハイブリッド適応進化アルゴリズム(HAEA)の拡張として、新しい多目的アルゴリズムを提案する。
MoHAEAは、MOEA/D、pa$lambda$-MOEA/D、MOEA/D-AWA、NSGA-IIの4つの状態と比較される。
論文 参考訳(メタデータ) (2020-04-29T02:16:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。